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Consider a firm that adjusts its production and the choice of durability for its products 
instantaneously. We show that when the marginal cost with the respect to durability is nonincreas- 
ing, (a) the optimal durability for both the competitive firm and the monopolist decreases over 
time and (b) the monopolist will produce a good with lower durability than the competitive firm. 
We thus lend support for empirical findings and causal observations that found the phenomenon 
of declining durability over time. 

1. Introduction 

Lawrence White (1971) reports that for the U.S. automobile industry since 
1945, the durability of cars of all makes, for cars of the ‘big three’, and for 
each of the main brands declines over time. The decline in durability is rather 
noticeable. For example, the percentage of nine-year-old cars (out of their 
original production) still on the road has declined from about 80 percent in 
1955 to about 55 percent in 1967. The same percentage for eight-year-old cars 
has declined from 86 percent to 74 percent. The final conclusion remains true 
even after considering several other possible explanatory variables such as 
changes in relative prices, disposable income, repair costs, and the like. 

Economists have studied the behavior of the product durability over time. 
Of special interest is the effect of market structure - perfect competition 
versus monopoly - on the behavior. This extensive work done on durability is 
limited in some sense. The work has either dealt with the durability in the 
steady state, or has considered previous time periods but restricted the analysis 
to the optimal level at the steady state, not considering the periods leading to 
the steady state. See Kleiman and Ophir (1966) Levhari and Srinivasan 
(1969) Swan (1970) Levhari and Peles (1973), Kamien and Schwartz (1974) 
Auernheimer and Saving (1977) and Abel (1983). 

*We would like to thank an anonymous referee for a number of helpful comments. 
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Many goods are produced while the market is not in a steady state. This is 
especially true for new products entering the market. The interim periods are 
important since, in many cases, long before the steady state is reached, the 
market conditions change due to the introduction of new technologies, intro- 
duction of new products, and the like. 

In this paper we deal with the behavior of durability in dynamic market 
conditions (mainly new products) in a unified way. The analysis presents a 
rationale for empirical findings such as White’s declining durability. 

Our main assumption regarding the issue of durability and market structure 
is that the marginal cost of production is increasing in production. This 
contrasts with the constant returns to scale assumption of Swan (1970) that 
enables him to derive his claimed independence between market structure and 
durability. Later studies by Sieper and Swan (1973) and by Auernheimer and 
Saving (1977) indicate that the ‘general message . . . seems to be that the 
relaxation of the constant returns assumption does not upset the Swan 
independence result in the long run’ [Schmalensee (1979)]. 

This work indicates that the constant returns assumption is essential in 
deriving the independence condition. 

The paper is organized as follows: First, we compare the two common types 
of durable goods discussed in the literature: the ‘one-hoss-shay’ good that 
breaks down but never wears out and the exponentially decaying good. We 
show that the total amount of service a good produces is a measure of 
durability that is consistent across the decay methods. We then show that, for 
an continuously decaying good, when the marginal cost of durability does not 
increase with production, then along the path leading to the steady state (a) 
both the competitive firm and the monopolist (both seller and renter) will 
choose an optimal durability path that declines over time and (b) the 
monopolist will produce a good with lower durability than the competitive 
firm. 

This paper is an extention of the authors’ work on the subject [Muller and 
Peles (1989)] that deals with the one-hoss-shay depreciation method. As will be 
noted in the next section, although the form of depreciation is called exponen- 
tial decay, it is, in effect, the most general form of continuous depreciation. 

A point of interest is that the paper utilizes the technique of optimal control 
with integral state equation. This technique is useful whenever the path of the 
(capital) stock determines future actions and not only the size of the stock. 
See, for example, Kamien and Muller (1976). 

2. Decay of durable goods 

There are two types of durable goods discussed in the literature: one that 
decays exponentially and the other that breaks down abruptly as in the 
one-hoss-shay case. The firm that uses the services of the good, i.e., the lessee, 
pays for a unit of service per period and, in the absence of transaction costs, is 
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indifferent between two types of goods. To see the difference it makes on 
the decision of the producing firm, consider a machine that, when leaving the 
factory, yields exactly one unit of service for the first period (year). In the 
one-hoss-shay method, it yields one unit of service per year over its entire 
finite life time (denoted by N), and then suddenly evaporates and yields zero 
units of service thereafter. The total amount of service it yields is exactly N 
over its entire life time. In the exponential decay method, the machine yields 
one unit of service for the first year and less each year thereafter, at a constant 
proportional rate. 

If the firm decides to add to the durability of this year’s vintage of 
machines, in the one-hoss-shay method, this will not affect the stock of service 
until the last year of the machine. In the depreciation method, it affects the 
stock starting next year as less of the stock will depreciate next year since this 
year’s vintage is more durable. Thus the firm’s considerations concerning 
optimal durability are much more complex for the depreciation method since 
the firm has to consider the price movement for the service from now to the 
final horizon and not just the price in the last year of the machine. 

In terms of the stock of services, however, there is very little difference. The 
stock depreciates at some rate. The firm can control the stock either by 
changing its production level or by controlling the depreciation rate. It makes 
little difference whether it does it by producing machines that last longer but 
do not depreciate or by producing machines that depreciate more slowly but 
do not die. To see this, let the good produced decay at a rate of N-‘. The total 
amount of service it renders over its life time is given by 

/ 

M 

e-N-‘fdt = N. 

0 

Thus the durability N has exactly the same interpretation as in the one- 
hoss-shay method. There the product yields one unit of service per year for N 
years and thus its total service is N. In the depreciation method it yields one 
unit of service for the first year and depreciates at a rate of N-’ thereafter. Its 
total service over its (infinite) life time is exactly N. The one advantage of 
exponential decay is that it indirectly takes into account the cost of mainte- 
nance. If these increase with age of the product, the net services supplied by 
the good is decreasing. 

Let Q(t) and x(t) be the total stock of services available in the market at 
time r and the quantity produced at time t, respectively. When the machines 
produced depreciate at a constant rate N-’ (at a steady state, for example), 
the equation that describes the accumulation of the total quantity is given by 

p(t) =x(r) - N-'Q(t), 

where a dot represents differentiation with respect to time. 
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When the depreciation N-’ is not constant, the equation obviously does not 
hold. Note that, if a function N(t) replaces N in the first equation, this 
implies that once the firm sets the new durability, and therefore the deprecia- 
tion for the goods produced today, this will be the rate at which the whole 
stock decays today. This will be true, for example, with respect to accumula- 
tion of nominal wealth. It depreciates at the current inflation rate, regardless 
of the inflation that existed at the time parts of it were earned. 

In a durable stock case, each unit depreciates at the rate which was decided 
upon when the unit was produced. The total stock is, therefore, the summation 
of all investments done in the past, where each unit depreciates at its own rate. 
The equation, thus, is given by 

Q(t) = (re~N-l(s)~r~s)X( s) ds, 

JO 
(1) 

This equation is a variant of the one given by Arrow (1964) who first 
investigated a problem of capital accumulation with variable depreciation; see 
also Kamien and Muller (1976) and Auernheimer and Saving (1977). In the 
following two sections, we solve the firm’s problem of choosing production 
rate and durability path so as to maximize its (discounted) profits. 

Note that since N-‘(t) is not prespecified, the description of eq. (1) is the 
most general form of continuous depreciation. For example, if an arbitrary 
function f(t) is desired as a depreciation function, this can be achieved by 
setting N(t) according to 

N(t) = -l/lgf(t). 

3. Optimal durability path 

We assume that the firm produces a good which supplies some type of a 
service. The demand for the good produced is for its service supplied during 
the same period. That is, the periodic rental price depends on the total 
quantity Q available in that specific period. Services are proportional to 
quantity of goods available. We discuss the problem of a seller as well as a 
firm that rents its products. 

Firms have the usual U-shaped average cost curve and production takes 
place at the rising section of the marginal cost function. Since Q(0) = 0 and 
the quantity at the steady state is a positive, the total quantity is increasing 
over time. We assume it increases monotonical1y.l 

‘This assumption is related to the assumption we make later on about the existence of an 
interior solution. In principle, there could be an optimal solution in which N(f) = 0 for some 
values of t, thus reaching a boundary of the feasible set. In this case this monotonicity condition. 
the local concavity of the Hamiltonian, and the necessary condition (8) need not hold. We do not 
know, however, an existence theorem for optimal control with integral state equation that will 
assure us interiority as required. 
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We assume that firms are operating at decreasing returns to scale and so the 
steady state is not reached immediately. We also assume that the interest rate 
remains constant over the entire period. 

The decision each firm is facing is the optimal quantity to produce each 
period (x) and its expected durability (N). For simplicity, but without loss of 
generality, all goods produced at a given period have the same durability N, 
yet the durability can (and will) differ between different periods. The relation- 
ship of the cost of producing the units x and determining the durability N is 
given by 

i.e., 

(I/x>K(x, N)/JN=IC/‘(N)$+), (3) 

where + is some function which can decrease, increase, or be constant in x. 
Given these assumptions, the firm chooses a path of production x(t) and 

durability N(t) so as to maximize profits given by 

7:=/me-‘f[P(N(1),t)x(l) -C(x(t),N(t))]dt, 
0 

(4) 

subject to the state eq. (l), where P( N( t), t) is the selling price of the product 
at time t, when its durability is N(t), and r is the discount rate. 

The exact form of the relation between the selling price and the durability 
can be ascertained via the rental price for the product which is denoted by 
p(Q( t)). The durability of a product produced at time t is fixed at N(t). Thus 
the services it yields deteriorate at a rate of N-‘(t). The selling price will be 
the discounted stream of rental prices of the service when the discounting 
takes into account not only the deterioration of the services at a rate of N-‘(t) 
but the discount rate r as well. Thus P(N(t), t) is given by 

P( N( t), 1) = lmp( Q( S))e-(r+N-‘(r))(s-t)ds. 

Substituting (5) into (4), changing the order of integration, and using eq. (1) 
yield 

r = Jme-“[p(Q(t))Q(f) - C(x(t>, N(r))] dt. 
0 

(6) 

In the competitive case we will assume that although the price is not a 
function of the quantity produced by the firm, it is a function of the total 
industry’s output. 
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The cost function is given by eq. (2) where I,!J’ > 0, f’ > 0, 4” 2 0, and all 
other second derivatives are positive. The sign of C#B’ will be defined later on. 
When @B’(X) = 0, the marginal cost with respect to N per unit of x is 
independent of the level of x. 

The analysis is an optimal control problem with integral state equation. The 
conditions which are given below are necessary conditions for optimality; see 
Kamien and Muller (1976) for a proof and a general discussion on these types 
of problems. Define the Hamiltonian as follows: 

H = e-“{ pQ - x$$ -f} + ~e-N~‘(rK~-‘)x(~)x(s)ds. (7) 

The necessary conditions for optimality are aH/aN = 0, aH/dx = 0, and 
X = aH/aQ(t). Since we assume the existence of an interior solution, an 
additional necessary condition is local concavity of the Hamiltonian, i.e., the 
Hessian matrix should be negative semidefinite at the optimal choice of 
control variables. To simplify mathematical notations, let p(s)(l + l/q(s)) 
and p(t)(l + l/q(t)) denote the expressions p(Q(s))(l + l/n(Q(s)) and 
p(Q(t)(l + l/q(Q(t)), respectively. Solving and substituting for h yields 

J/‘c#I = Np21m(.s - t)p(s)(l + 1/9(S))e-(‘+N-1(‘))(S-‘)dS, (8) 

where n is the price elesticity of demand, 

(~+x~‘)~+f’=~mp(s)(l+l/~(s))e-(‘+”-l(’))”-l)ds. (9) 

Differentiation of eqs. (8) and (9) with respect to time yields the following 
two equations with two unknown i and N: 

= N-2X e-” Jm[l - (I+ N-‘(t))& t)] 

xp(s)(l + l/~(S))e-(‘+N-‘)(s-r)dS, 

= -e-” J tm(t-+ N-')p(s)(l + l/~(S))e-(‘+N-l)(S-‘)dS 

(10) 

+p(t)(l+ l/q(t))eCr’. (11) 
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In appendix 1 we show that the right-hand side of eq. (10) is positive and 
the right-hand side of eq. (11) is positive, as long as our assumption that the 
total stock does not decrease over time holds. Using this fact and solving for 1 
and j? yields that, as long as c$’ I 0 (and so 13 2H/8N8x 2 0), 1 is negative 
and ni is negative. This is achieved by noting that the Hessian matrix of the 
Hamiltonian is negative semidefinite. In addition, if 4” > 0, then clearly 
a *H/d N 2 < 0 as required by the fact that the Hessian is N.S.D. If, however, 
4” 2 0, then we show in appendix 2 that a 2H/Ll N 2 is still negative. 

Thus, the results holds both when there are decreasing returns to scale with 
respect to durability and constant returns to scale, that is, $’ I 0, and 
production decreases over time as can be expected. Note that production 
decreases also in the standard case where the firm does not have control over 
the durability and the latter remains fixed. 

In addition, durability decreases over time. The reason behind it relies on 
the fact that the price (or marginal revenue) declines over time. Thus, when 
considering the choice of durability now or at a later date, since the discounted 
(marginal) benefits decline with time, so does the durability. 

In case that the marginal cost with respect to durability increases in x, i.e., 
$J’ > 0, durability can either decrease or increase. It depends on the rate at 
which the price declines, which tends to lower durability, versus the rate at 
which the marginal cost increases in x (the magnitude of c#J’) which tends to 
increase durability. 

4. Market structure and durability 

The analysis so far was performed on the assumption of monopoly. When 
the setting is competitive, the analysis still holds where the price p replaces the 
marginal revenue term p(1 + l/q). Although the firm acts as if the price is 
given, price does go down to the steady state since it is a function of the total 
industry’s stock on the market. 

Although the pattern of behavior of the durability over time towards the 
steady state of a competitive firm is similar to that of the monopolist, the two 
functions will be different as a result of the two market structures. To make 
the comparison meaningful the monopoly and the competitive market struc- 
tures will produce under similar terms. Thus we assume that the monopoly is a 
multiplant monopoly, or a cartel acting as a monopolist, such that each plant 
will operate approximately as a firm in a competitive market. In appendix 3 we 
show that assuming cp’ I 0, namely that marginal cost with respect to durabil- 
ity does not increase with production, then both quantity produced x and 
durability N are increasing functions of the elasticity of demand facing each 
firm. Thus, if we have two markets, 1 and 2, and lqll> 1~~1, then xi > x2 and 
Ni > N,. A firm whose demand is more elastic will produce more. Since we 
assume a production function such that with lower output the marginal cost of 
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durability is higher, durability and quantity are positively correlated. Thus the 
firm with the more elastic demand will produce more and its products will be 
more durable. 

A firm in a competitive market faces an elasticity of demand that is higher 
than its monopolist counterpart. In fact, it has an infinite elasticity of demand. 
Thus we obtain that, given our assumption that +’ I 0, the durability of goods 
produced by a monopoly falls short of the durability of goods that would have been 
produced by a competitivejrm. Note that, in the case when +’ = 0, only one of 
Swan’s assumptions (of constant returns) is relaxed. The separability between 
cost of the production and durability is still assumed in this case. This clearly 
indicates the sensitivity of Swan’s independence result to his assumptions. 

5. Conclusion 

To conclude, we have shown that, when the marginal cost with respect to 
durability (per unit of production) does not increase with production (i.e., 
$J’ 2 0), then both competitive firm and a monopoly will choose an optimal 
durability path which decreases over time. In addition the same condition 
causes the monopolist to choose a durability which is lower than the durability 
chosen by the competitive firm along the path leading to this steady state. 

Finally, it might be of interest to find out whether the selling price is 
decreasing through time. To do so, differentiate (5) with respect to time and 
use the fact that 

cc e -(r+N-‘(tM-t)dS = l/( r + N-‘(t)), 

to arrive at the following: 

dP/dt=(aP/dN)(dN/dt)+(r+N-l(t)) 

X/j”[p(Q(s)) -p(Q(t))]e-(‘+N-‘(‘))(S-r)ds. 
t 

Since the rental price declines through time, the second term is negative. The 
first term is negative if durability declines through time since using (5) aP/dN 
is clearly positive. Thus, if the marginal cost of durability does not increase in 
production, the selling price declines through time. If the reverse holds, 
however, there might be a case where durability increases at such a rate that, 
although the rental price declines, the selling price increases because of the 
higher ?urabili?y. 
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Appendix 1 

In order to prove that 

is positive, define s* as the unique s that solves the equation (r + N-‘(t)) 
.(s* - t) = 1, that is, s* = t + l/(r+ N-‘(t)). In addition define p*(l + 
l/q*) =p(s*)(l + l/n(s*)). Since ~(1 + l/n) declines over time, the follow- 
ing inequalities hold: 

and 

1 - (r + P)(s - t) 2 0, 

(1 + l/n(s))p(s) 2 (1 + l/n*)p* for t 5 s 5 s*, 

l- (r+N-')(s-t)<O, 

(1 + l/~~(s))p(s) < (1 + l/n*)p* for s > s*. 

Therefore the following inequality holds: 

Jm[l-(r+~-1(~))(s-t)]~(~)(1+l/p(s))e-(r+N1(’)XS’)d~ 
f 

> p*( 1 + l/q*) lm[l - (r + N-‘( t))( s - t)]e-(‘+N-‘(t))(s-f)dS 2 0, 

where the last inequality is achieved by performing the integration. In order to 
show that the expression 

- J( ca r + N-i(t))p(s)(l + 1/77(S))e-(r+N-‘(r))(s-t)ds 
f 

+Pw(l + VdG> 

is positive, note that, since ~(1 + l/n) declines with time, the above expres- 
sion is strictly larger than the following: 

p(t)(l +l/n(i))[-(~+N’(r))/we’.i”l”“‘“‘ds+l] =O, 
* 

where the last equality is achieved by performing the integration. 
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Appendix 2 

In order to show that, even when 4” = 0, 8 2H/~N2 < 0, we have to show 
the positivity of the following expression: 

im(2N(t) - (S - t))(s - t)e-(‘+N~‘(‘))(S-‘)P(S)(l + l/n(S)ds. 

Define s* as s* = t + 2 N. As in appendix 1, since p (1. + l/q) declines over 
time, this expression is larger than the following expression: 

p*(l + l/q*)lm(ZN - (S - t))(s - t)e-(‘+N-L)(s-t)ds 

Performing integration by parts yields that the last expression is positive. 

Appendix 3 

In this appendix we show that both production and durability are increasing 
functions of the absolute value of the elasticity of demand. Thus, since TJ is 
negative, we have either ax/an < 0, aN/an < 0 or ax/6’1nl> 0, aN/a InI> 0. 

Differentiation of (8) and (9) with respect to 71 
equations with two unknown ax/an and aN/av: 

=N-2 

yields’ the following two 

a2H/aNaxaN/as+ a2H/ax2a_qaq= jmPq~~2e-(riH-‘)(s-r)ds. 
I 

As in the previous appendix, since the Hessian matrix of the Hamiltonian is 
negative semidefinite, the left-hand side of the above two equations is positive, 
and 8 2H/iJNax > 0 (since +’ I 0), we have that both ax/a~ and aN/an are 
negative. 
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