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1. INTRODUCTION

The purpose of this paper is to characterize the domains of individua!
preferences which admit n-person nondictatorial Arrow-type social welfare
functions (see Arrow [1]), and the domains which admit nonmanipulable
voting procedures (see Gibbard [6] and Satterthwaite [15]). We show that
the existence of such a function or procedure for a given domain is indepen-
dent of the number () of people for which they are desired, i.e., there exists
an n-person social welfare function (voting procedure) for a given domain if
and only if there exists a 2-person social welfare function (voting procedure)
for the same domain. Thus a concept of a domain being nondictatorial or
nonmanipulable (admitting a nondictatorial social welfare function or
nonmanipulable voting procedure) can be defined independently of the
number of individuals in the society. It turns out that these two concepts are
completely equivalent and we give the characterization of those domains {our
definition of a nonmanipulable voting procedure assumes a certain rationality
condition).

Attempt to overcome Arrow’s impossibility theorem by restricting the
domains of individual preferences are numerous, The most celebrated example
is the single peakedness condition originated by Black [2] and extensively
discussed by Arrow [1]. Sen and Pattanaik [18] discussed the conditions under
which majority rule which satisfies Arrow’s conditions of unanimity, in-
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dependence o  relevant alternatives and nondictatorship, would also
satisfy transitiv__,  For an extensive discussion see Sen’s book [17]. Recently
additional negative results were demonstrated by Kalai et gl. [7]. In this
paper we consider any social welfare function, not just those based on
majority rule.

The equivalence of Arrow’s axioms to axioms of nonmanipulability was
treated by many authors. One direction of this equivalence was first proved
by Gibbard [6] and very elegantly by Schmeidler and Sonnenschein [16].
Satterthwaite was the first to prove the full equivalence for the case of un-
restricted preferences in his 1975 paper. Pattanaik [12] proved one direction
of the equivalence for the cases in which individual preferences may be
restricted, and a discussion of the possibility of full equivalence for these
cases appears in Blin and Satterthwaite [3].

Maskin studied the question of social choice on restricted domains in
great depth. In his two papers {8, 9] and verbally, under the assumption of
anonymity (symmetry of individuals), he characterized the domains which
admit a 2-person social welfare function, gave the equivalence of an sn-person
function to two, three or five persons functions depending on n, and proved
the equivalence of Arrow’s axioms to axioms of nonmanipulability. Also,
since then, independently of us, he studied questions similar to the ones we
treat here; namely, he replaced the restrictive anonymity assumptions with
the well-known assumption of nondictatorship, and obtained interesting
results under a different approach (see Maskin [10, 11]).

A by-product of our characterization is a generalization of Arrow’s
impossibility theorem and the Gibbard-Satterthwaite impossibility theorem
for all the dictatorial domains. (The unrestricted domain is easily shown to be
dictatorial.) However, we do not deal with the case where the individuals or
the society are allowed to be indifferent over alternatives.

We let A denote a set of alternatives with at least two elements, and let 2
denote the set of all transitive antisymmetric total (i.e., if p € X' then xpy or
ypx or x = y) binary relations on 4. An element of 2'is called a preference
relation. We let £2 be a nonempty subset of 2; the elements of £2 represent the
admissible preference relations in the society. For an integer n == 2, 02"
represents the set of all n-tuples of preferences from (2 and an element of 27,
P == (py, Py s Pn) €27, is called an n-person profile. An n-person social
welfare function (SWF) on £ is a function f: 2" — 2 which satisfies the
following two conditions.

1. Unanimity. For every P 0Q? if P = (py, Do s Pu), X, Yy € A and
fori =1, 2,..., n, xp;y then xf(P) y.

2. Independence of irrelevant alternatives (II4). For x,ye A and
P, Qe if [xp,y if and only if xg,y for i = 1, 2,..., n] then [xf(P) y if and
only if xf(Q) y].
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[is dictatorial if there exists an 7, 1 <{ i < n, for which f{P) = p, for every
P e 2" fis nondictatorial if it is not dictatorial.

2. INDEPENDENCE OF

THEOREM 1. For n = 2 there exists a nondictatorial n-person SWF on 2
if and only if there exists a nondictotorial 2-person SWF on £2.

Before we proceed with the proof of Theorem I we need some additional
definitions and lemmas. We say that the n-person SWF fis dictatorial when-
ever two individuals agree if for every 1 <{,j < n, there exists an integer
&(i, /) such that for every P e Q2" f(P) = py.) whenever p; = p;. That is,
k(i, }) is a dictator whenever i and j have the same preferences.

Lemma 1. If n 24 and f is dictatorial whenever two individuals agree
then fis dictatorial.

Proof. I {42 =1 then the proof is completed because then fis dicta-
torial. So we can assume that there are pl, p? € 2 and that p*  p? Next we
observe that there must be a pair 7, j such that 7 % k(j, /) # j. If not, consider
P = (pt p', ..., p?. f(P) = p* and f(P) = p?, a contradiction. So assume
without loss of generality that k(2,3) = 1 and we will show that { is a
dictator for f. We first show that f(P) = p, whenever p, = p; for some
I<<ij<mandi+#jHi#1=jand k(i,j) = s 5 1 let P be defined by
p1=prand p; = p¥fori=2,3,., n Since 2 and 3 agree in P it follows that
f{p) = p* and since / and j agree in P it follows that f(p) = p, = p* +# % a
contradiction. Therefore k(/, j) = 1. In the other case, one of the individuals
iand j, say i, is 1. If 2 5 j %= 3 then we let P be defined by p; = p;, = p* and
p. = p*for 1 £ 5 5 j. 1t follows (2 and 3 agree) that f(P) = p,. Finally if
J =201 j=3,sayj= 2, then since we know already that k(3. 4) = 1 we can
let 3 and 4 assume the rolls of 2 and 3, respectively, and we are back in the
case where j is different from the two distinet individuals.

So we showed that there must be an individual 7 such that whenever two
individuals agree { is a dictator. Now since n > 4 for any pair of alternatives
x, y at least two individuals must agree on this pair so (by ITA} i is a dictator
for this pair. Q.ED.

We call a pair of distinct alternatives x and y trivial if there are no p?, p* e (2
such that xp'y and yp®x. Thus the pair x, y is trivial if there is always un-
animity on it.

Let p € Q2. Define p~' € £ to be the preference relation which reverses the
ordering of all the nontrivial pairs and keeps the orderings of all trivial pairs.
Notice that p~ may not exist but when it does it is unique and (p~)~* = p.
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Two preferences pl, p? € {2 are connected if there exists a nontrivial pair
x, y € 4 such that xp'y and xp?y, i.e., if they agree on a nontrivial pair.

Notice that for every p € £2 there is at most one (possibly none) pe 2
(namely, p~*) which is not connected to it. Two preference relations p, p? are
indirectly conmnected if they are connected by a finite chain of connected
preferences, i.e. there exist ¢l ¢2,..., ¢" such that p' = ¢'p? = ¢” and ¢ is
connected to g*tt fori =1, 2,....,n — 1.

LemMma 2. If any two elements of §2 are indirectly connected and f is a 3-
person SWF with the property that for every p € 2 there is an i(p), 1 <i(p)
< 2, such that f(py , P2, P) = Ditw) then fis dictatorial.

Proof. If | 2| =1 then the lemma is trivially true. If | £2] > 2 then
clearly i(p) is unique for every p (consider a profile with a conflict between
individual 1 and individual 2). We will show that i(p) = i(p’) for every p,
p' € 2 and thus i(p) is a dictator for f. It suffices to show that i(p) = i(p’) for
every pair p, p’ which are connected. Suppose p and p’ are connected through
the nontrivial pair x, y. Let p* and p? be preferences for which xp'y and yp*x.
Consider the two profiles P = (p%, p?, p) and P’ = (p*, p% p’). Since p and p’
agree on x, y and since there is a conflct between 1 and 2 on x, y it follows by
ITA that i(p) = i(p), Q.E.D.

We define the minority rule 3-person SWF f as follows. For every P =
(P1> P2, py) €L

xf(p) y if and only if either xp;y for i = 1, 2, 3 or two p,’s prefer y
to x and the third p, prefers x to y.

LemMA 3. If the 3-person minority rule is a well-defined SWF on £2 then
there exists a 2-person nondictatorial SWF on £2.

Proof. Choose any p € 2 and define g,(p; , ps) by

xg,(p1,ps) y if and only if either xp,;y and xp,y or only one of
1 s Po prefers x to y and p prefers y to x.

It is clear that g, is well defined and satisfies unanimity and 1IA. We have to

show that > = g,(p, , p,) is transitive for every p, p; , p. € £2. Suppose this
is not the case, i.e., there exist x, y, z € 4 such that

x>y >z>x

Case 1. x> y by unanimity of 1 and 2 and the same for y > z. But then
x > z by unanimity, a contradiction.



CHARACTERIZATION OF DOMAINS 461

Case2. x > y by unanimity and y > z not by unanimity. Assume without
loss of generality yp,z, zp,y, and zpy. Since z > x we must have zp,x and xpz.
But then we have for the minority rule function f

Xf(py,> P2 D) V(D1 s Do P 2f (P P2 D) X
a contradiction.

Case 3.y >> z by unanimity and x >> y not by unanimity. Assume without
loss of generality that xp,y, yp.x and ypx. Since z > x we must have zpyx

and xpz. But then we have xf(py,p5.0) ¥ f(pr, P2, ) 2f(P1,02,0) %, 2
contradiction.

Case4. x> y not by unanimity and y > z not by unanimity. Assume
without foss of generality that xp, y, yp.x and ypx. Also, since y > z not by
unanimity, we must have zpy. Thus by transitivity of p we have zpx. So in
order to have z > x we must have zp,x and zp,x. Therefore by transitivity we
have zp,y and since we have y > z we must have yp,z. But now we get

xf(py, Po»2) V(P15 P2, D) 2f(P1,s Pa» D) X, & contradiction. QE.D.

Proof of Theorem 1. Let f be a nondictatorial 2-person SWF on £2,
Define g : 22" — X by g(py, Pa s Do) = f(P1, o). It is casy to see that g is
a nondictatorial #-person SWF.

To prove the other direction we show that for » > 3 if a nondictatorial
n-person SWF on (2, f, exists then there exists a nondictatorial {(z — 1)
person SWF on £2, g. We first show it for n > 4. For 1 <i<j<n we
define g, ; by

8.l P1> Do sos Pnt) = [(D1 s Do sevs Pica s Pis Pi s Diset ooy Pri)-

In other words g, ; replicates i’s preferences in the jth place, shifts p;,
Dyt s Do Up by one place and then uses f. It is easy to see that all the
g8 are (n — 1)-person SWF’s and we claim that at least one of them
is nondictatorial. Suppose that this is not the case; i.e., all theg, ;s are
dictatorial. That implies, for f, that whenever two of its arguments are the
same f is dictatorial. By Lemma 1 it follows that f is dictatorial which is a
contradiction.

Now we assume that n = 3. We consider first the case where £2 consists of
only two elements of the type p and p~1. In this case we define the 2-person
nondictatorial function g by g(py, ps) = p if either p, = p or p, = p and
g{(py ., ps) = p~tif both p, = p, = p~L It is easy to check that g(P) is transi-
tive and that g satisfies the unanimity condition, and since £2 = {p, p~%} it
follows that g satisfies YIA. Thus in this case there exists a 2-person non-
dictatorial SWF g. In the second case {2 is not of the form described above;
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thus any two elements of £ are indirectly connected. We assume first that
there are two individuals say 1 and 2, that are decisive for every pair of
alternatives; i.e., forevery x, ye 4 and every p, , ps , ps € Lif xp; yfori = 1,2
then xf(p; , pa , ps) . For every p € Q2 we define g,(ps , po) = f(p1, 22, p)- It
is clear that all the g,’s are 2-person SWF’s (unanimity follows from the
decisiveness of {2, 3}) and by Lemma 2 it follows that if they are all dictatorial
then so is 1. So there exists a 2-person nondictatorial SWF g, .

Finally, if no pair of individuals is decisive for all the pairs we again con-
sider two cases. In the first case there is an individual, say 1, who is not
weakly decisive for all the pairs; i.e., there exist p*, p? € © such that f(p!, p%,
PY £ pt. We can define g(p;, p,) = f(py, P, po) and g is a 2-person non-
dictatorial SWF. In the second case every individual is weakly decisive for
all the pairs. In this case f must be a minority rule SWF on £2 and by Lemma 3
there exists a 2-person nondictatorial SWF g on £2. Q.E.D.

3. CHARACTERIZATION OF NONDICTATORIAL DOMAINS OF PREFERENCES

We say that the set of preferences 2 C X' is nondictatorial if there exists a
nondictatorial n-person SWF on £2. This definition is independent of n for
n > 2 by Theorem 1 (for n = 1 every SWF is dictatorial by unanimity).
Examples of dictatorial families are any £2 with | 2 | = 1 (by unanimity) and
the whole space X provided that there are at least three alternatives (by a well-
known theorem due to Arrow [1]). Single peaked preferences on a line (see
Sen [17] and Black [2]) is an example of a nondictatorial family. The purpose
of this section is to characterize all the nondictatorial families of preferences.

We let T={(x,y)edx A:x5%y}, TR={(x,y)eT: there is no
ptef2 and p? e R such that xp'y and yp?x} and NTR = T — TR. Thus T
consists of all distinct ordered pairs, NTR consists of the nontrivial ordered
pairs (both xply is feasible by some p* € £2 and yp®x is feasible by some p? € £2),
and TR consists of the trivial pairs (either xpy for all p € 2 or ypx for all
pefd).

We say that a set R C T is closed under decisiveness implications (closed DI)
if for every two pairs (x, y), (x, z) € NTR the following two conditions are
true.

DI1. If there are pt, p? € 2 with xplyp'z and yp?zp?x then
DIlla. (x, y)€ R implies that (x, z) € R, and
DIlb. (z, x) € R implies that (y, x) € R.

DI2. If there is a p € £2 with xpypz then

DI2a. {(x,y)e R and (y, z) € R imply (x, z) € R, and
DI2b. (z, x) € R implies that either (y, x)€ Ror (z, y) € R.
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We say that £2 is decomposable if there exists a set R, with TRC RL 7,
which is closed under decisiveness implications.

THEOREM 2. 2 is nondictatorial if and only if it is decomposable.

Lemma 4. Let RyCT,TRC R, CT, R, is closed under decisiveness
implications, and Ry = TR U {(x, ») e T2 (¥, x) ¢ Ry}, then TR C R, C T and
R, is closed under decisiveness implications.

Proof. 1t is clear that TR C R, C 7. To show that R, is closed DI we
assume that (x, ¥), (x, z) € NTR.

To show DI for R, we assume that for some pl, p? € £ xptyp'z and yp*z
p2x. We assume contrary to DIla that (x, y)e R, and (x, z) ¢ R,. Since
(x, ¥}, (x, z) e NTR it follows that (¥, x) ¢ R, and (z, x) € R, . By Dllb of R,
we get a contradiction so that DIila must hold for R, . Assuming, contrary
to DIlb for R,, that (z, x) e R, and (y, x) ¢ R, we see that (x, z) ¢ R, and
{x, v) € R, . This contradicts DIla for R, , thus &, must satisfy DI1b.

To show that R, satisfies DI2 we assume that for some pe 2 xpypz. We
assume, contrary to DI2a for R, , that (x, y) € Ry, (¥, 2) € R, , and {x, z} & R,
This implies that (y, x} ¢ R, and (z, x) € R, . By DI2b of R, it follows that
(z, yYe Ry . This implies that (y, zye TR by the definition of R,. Since
(x, zj € NTR it foilows that there must exist p? € 2 for which yp®zp%x. Now
Dila for Ry, which was already proved, shows that (x, z) € R, , a contra-
diction. To show that R, satisfies DI2b we assume, per absurdum, that

z,x)€R,, (1, x)¢R,, and {z,y)¢ Ry. It follows that (x,z)¢ R, and

{(x,y)eR,. ¥f (y,2)e NTR then (y,z) € Ry, which contradicts DI2a for
R, . So it must be that (y, z) € TR. But then, by the fact that {x, z) e NT, it
follows that there is a p? € £2 for which yp?zp®x. Now Dila for R, is contra-
dicted, which completes the proof of the lemma.

Proof of Theorem 2. We first assume that (2 is nondictatorial. By
Theorem 1 there exists a nondictatorial 2-person social welfare function fon
£2. We let R, be the set of pairs for which voter 1 is decisive, i.e.,

Ry = {{x, y)e T: for every Pe? if xp,y then xf(P)y}.

1t is clear that R; O TR. If R, = TR then 2 is a dictator so R; 2 TR. Also,
if Ry = T'then 1is a dictator so TR R, & T.

Now we show that R, is closed DI, so we assume that (x, y), (x, z) € NTR.
To show D11 we assume that for some p*, p? € £ xp'yp'z and yp?zp®x. Contrary
to Dlla, we assume that {x, y) e R, and {x, z) ¢ R, . Consider the profile
P = (p4 p?. xf(P) y because (x, y) € R, yf(P) z by unanimity. So by transi-
tivity xf(P) z. Thus, ITIA implies (x, z) € R, , a contradiction. Contrary io
DIlb we assume that (z, x)e R, and (y, x) ¢ R; . Consider P = (p?, p*).
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Yf(P)z by unanimity and zf(P)x because (z, x)e R,. Thus 3f(P)x.
Therefore, by ITA, (y, x) € R, , which is a contradiction.

To show DI2 we assume that for some p e 2 xpypz. We assume, contrary
to DI2a, that (x, y)e R, (»,2z) € R, , and (x, z) ¢ R, . Consider any P with
Py =p. xf(P)y because (x,y)e R;, and yf(P)z because (y,z)eR,. By
transitivity xf(P) z. IIA implies that (x, z) € R, , a contradiction. Finally we
assume, contrary to DI2a, that (z, x)e R, (»,X)¢R,, and (z,»)¢ R, .
Since (x, z) e NTR there is a p* € @ with zp'x. Consider P = (p', p). zf(P) x
because (z, x) € Ry, xf(P) y because (y,z) ¢ R, . So zf(P) y by transitivity.
Thus ITA shows that (z, ¥) € R, , a contradiction.

Notice that we could have defined R, to be the set of pairs for which 2 is
decisive. This would demonstrate where the structure of Lemma 4 arises.

Now we assume that 2 is decomposable by a set R, which is closed DI and
satisfies TR C R; C 7. We define R, = TRV {(x, y) € T: (y, x) ¢ Ry}; then
by Lemma 4, R, is closed DI and TR G R, C 7. We define f: Q22— 2 as
follows. xf(P) y if and only if one of the following three situations occurs:

1. Unanimity. xp;y for i =1, 2.
2. Decisiveness of 1. xp,y and (x, y) € R, .
3. Decisiveness of 2. xp,y and (x, ) € R, .

We first show that for every (x, y) € T, xf(P) y or yf(P) x but not both. If
both, then neither of them could have occurred by unanimity; also, they
could not both occur by decisiveness of the same voter. So assume without
loss of generality that xp,y, (x, ¥)€ Ry, yp;x, and (p, x) € R,. But this
shows that (x, y) € NTR and contradicts the definition of R, . Now assume
that neither xf(P) y not yf(P) x. We can assume without loss of generality
that xp; y and yp,x. So (x, y) € NTR, (x,y) ¢ Ry, and (y, x) ¢ R, , a contra-
diction.

Next we observe that £ is nondictatorial because R, = T and R, # T, f
satisfies ITA since it is defined on pairs, and f satisfies unanimity by definition.
Finally we show that for every P, f(P) is transitive. We assume to the contrary
that there is a P for which > = f(P)is not transitive, i.e., for some x, y, z, €4

X>y>z>X

Case 1

x>y by unanimity, and y > z by unanimity. In this case x>z by
unanimity, a contraiction.

Case 2

x> y by unanimity and y > z not by unanimity. Since the properties of
R; and R, are completely symmetric we can assume without loss of generality
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that y > z by decisiveness of 1. Thus xp;y p1z, (¥, 2) € R; and since z > x
we must have zp,xp, ¥ and (z, x) € R, . DI1b of R, implies that (x, z) e R;,
which contradicts the fact that {z, x) € R, .

Case 3

x > y not by unanimity and y > z by unanimity. We can assume without
loss of generality that x > y by decisiveness of 1; thus we must have xp, yp.z
and (x, y) € R, . Since z > x we must have yp,zp,x and (z, x) € R, . Dila of
R, implies that (x, z) € R, , which contradicts the fact that (z, x}e R, .

Case 4

x>y not by unanimity and y > z not by unanimity. If both of these
preferences occur by the decisiveness of the same voter, say 1, then we must
have xp, ypiz, 2D, ypoX, (X, ¥) € Ry (¥, 2) € R; and (z, x) € R, . But DI23 of
R, implies that (x, z) € R, , which contradicts the fact that {z, x) e R, . So we
assume without loss of generality that x > y by the decisiveness of 1 and
¥ > z by the decisiveness of 2. So we have xp, v, zp, ¥, 0,2, ¥pox, (x, v} € R,
and (», z) € R, . Since z > x one of the following subcases must occur:

Subcase 4a. zpgx for i =1, 2. In this case DIla of R, implies that (¥, x) e
R, , which contradicts the fact that (x, y) e R, .

Subcase 4b.  zp,x, xp,z and (z, x) € R, . In this case (z, x), (x, y} € NTR;
thus DI2a of R, implies that (z, y) € R, . Since {z, y) € NTR this contradicts
the fact that (y,z) e R,

Subcase 4c.  xpyz, zp,x and (z, x) € R, . In this case DI2a of R, implies
that (v, x) € Ry, which contradicts the fact that (x, y)e R, .
This completes the proof of Theorem 2.

Remarks. From Lemma 4 and the proof of sufficiency it is clear that we
could have defined decomposability somewhat differently; £2 is decomposable
if there exist two sets R, and R, such that TR ¢ R, C T, closed under deci-
siveness implication and satisfying for all (x, y)e NTR, (x, y)e R, if and
only if (¥, x) ¢ R, . These two definitions are equivalent (see Lemma 4), and
the difference is in appearance only. (It is easy to show that in this definition,
condition DI2b is redundant. This adds somewhat to the external difference.)
We let R, be the set of pairs for which { is decisive, thus having the following
intuitive meaning to the condition:

There exist at least two individuals with some power of decisiveness
(TR C R)). The condition that (x,yye R, iff (y, x)¢ R, guarantees the
antisymmetry of the SWF. R, being closed under the decisiveness implication
guarantees the transitivity of the SWF.
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4, APPLICATIONS

To show the usefulness of Theorems 1 and 2 we discuss the following
examples.

ExaMpLE 1. Arrow’s theorem., If @ =2 and | 4] >3 then all the
relations between any three alternatives are possible. This shows that the
only sets which are closed under decisiveness implications are & and the set
of all pairs; i.e., there is no nontrivial decomposition. Thus every SWF must
be dictatorial.

ExampLE 2. Single peak preferences (see Black [2] and the other standard
texts). Let g € 2, and define the set of single peaked preferences relative to the
linear order g by 2, = {p € Z: for every three distinct alternative x, y, z if
x q¥ q z then it is not the case that x p y and z p y}. To show that £2, has
nondictatorial #-person SWF’s for every n >> 2 we must show thadt £ is
decomposable. Let Ry = {(x, y) € T: xgy}. Clearly o = TRC R, & T. All
that is left to show is that R, is closed under decisiveness implications.

DIla. We suppose that (x, y) € R, and for some p*, p* e, xp'y pz
and yp?z ptx. These relations imply that in ¢, x cannot be between y and z,
and 7 cannot be between x and y. Thus y must be the middle one and since
x qy we must have x ¢ y ¢ z. Thus (x, z) € R; .

DIlb. (z, x) € Ry, xp'y p'z and yp*z p®x. Again y must be the middle
one so we must have z gy ¢ x. Thus (3, x) € R; .

DI2a. (x,y)€R,,(y,z)€R, and for some pef,, xpypz This
shows that x ¢ y g z. Thus (x,z) € R, .

DI2b. (z, x) € R, and for some p € 2, , x p y p z. This shows that éqy
or equivalently (z, y) € R, . Q.E.D.

It follows by Theorems 1 and 2 that a family of single peak preferences
admits nondictatorial n-person SWF’s for every n > 2.

5. A CHARACTERIZATION OF DOMAINS ADMITTING NONMANIPULABLE VOTING
PROCEDURES

The existence of a nonmanipulable voting procedure on a given restricted
domain is interesting on its own merits, and not just because of its equivalence
to the existence of an Arrow social welfare function (which we will show).
Imagine a sociaty for which it is known a priori that all individuals have
single peak preferences. This knowledge may come about by a prior analysis
or by historical experience and it is shared by all individuals in this society.
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Restricting the individual to vote in a single peak fashion presents no restric-
tion, and majority rule is a good nonmanipulable procedure for such a society.
Are there other types of societies for which this situation is possibie? The
answer to this question is given by our characterization.

The question of strengthening the result by eliminating the requirement
that the stated preferences (ballots), as well as true preferences, are restricted
is still open. Blin and Satterthwaite [4] dealt with the case of majority rule
and single peakedness. They showed that the restriction of single peakedness
on preferences alone without a restriction on admissible ballots is not suffi-
cient to guarantee nonmanipulability of the (generalized) majority rule.

Our assumption here is that the voting procedure will count only those
ballots which conform to the society’s known restriction, since any other
stated preference is insincere. The resulting voting procedure will be non-
manipulable if and only if £ (the admissible true preferences) is
decomposable. That is, the same restriction that guaranteed the existence of
an SWF will guarantee the existence of a nonmanipulable voting procedure.

An n-person voting procedure is a function F: Q" x (¥ — A, where
{7 is the set of all nonempty subsets of 4. We will assume that all voting
procedures satisfy the following three conditions.

1. Feasibility. For every a € and every P e Q" F(P, o) € .

2. Independence of nonoptimal alternatives (INOA). For every P e
and every a € 7if B C o and F(P, o) € f then F(P, B) = F(P, o).

3. Unanimity. For every Pef2" and every xel if x,yea and
xp;y fori=1,2,.,nthen y # F(P, o).

Fis dictatorial if there exists an individual 7 such that for every P € 2 and
every a € I, F(P, o) is ith top choice among the alternatives of «, i.e., F(P, o)
p:y for every y e a with y + F(P, ).

F is manipulable if there exists an o € &7, and P, P € £7 such that for some
i,p; % p;, for every s 4ip,=p and F(P, «) p,F(P,x). See Blin and
Satterthwaite [3] for a discussion of the definitions above.

THEOREM 3. Let n be any integer, n = 2. The following three statements
are equivalent for every £2 C 2.

L. 2 admits an n-person nondictatorial nonmanipulable voting
procedure.

2. £2 admits an n-person nondictatorial social welfare function.

3. Qs decomposable (recall that being decomposable is a property
which is independent of n).

Thus {2 admitting an s-person nondictatorial nonmanipulable voting
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procedure is a property which is independent of #, is equivalent to admitting
a nondictatorial social welfare function, and can be checked through the
decomposability property given in Theorem 2. The equivalence was discussed
by Blin and Satterthwaite [3] after Pattanaik [12] had proved it in one direc-
tion. Our proof is similar to a proof by Maskin but it relies heavily on our
Theorem 1, which enables us to discard his assumption of positive association.

Clearly our applications in examples 1 and 2 are still valid. So that in our
setup we obtain the Gibbard-Satterthwaite result as a corollary to Theorem 3.
Also, Theorem 3 assures us the existence of a nonmanipulable voting proce-
dures for any number of people in the cases where the preferences are restric-
ted to be single peaked.

Proof of Theorem 3. Clearly if £ admits a 2-person nondictatorial
nonmanipulable voting procedure then it does the same for n people (take the
extra players as dummies as in the proof of Theorem 1). Therefore, by
Theorem 2, it suffices to show the following two facts. If £ admits an »-
person nondictatorial nonmanipulable voting procedure then £ is decom-
posable. And, if 2 is decomposable then it admits a 2-person nondictatorial
nonmanipulable voting procedure.

To establish the first fact we assume that F is a nondictatorial nonmani-
pulable #-person voting procedure on £ and we define the n-person SWF F as
follows. For Pe " and x, y € 4, xE(P) y if and only if F(P, {x, y}) = x.
INOA guarantees that F(P) is well defined. Unanimity of ¥ follows by un-
animity of F. Also the nondictatorship of F implies that F is nondictatorial.
To show that F satisfies ITA we use the Schmeidler—Sonnenschein method [16].
If F does not satisfy ITA then there are two profiles P and @ and a voter j
such that p; == ¢; for i #j, p; agrees with ¢; on the pair {x, y}, and Fp)
disagrees with F(Q) on the pair {x, y}. It is clear then that voter j can mani-
pulate either F(P,{x, y}) or F(Q, {x, y}) in this case. Thus F is a well-defined
nondictatorial n-person SWF.

To establish the second fact we assume that £2 is decomposable. By
Theorem 2 there exists a 2-person nondictatorial SWF f on £2. We define the
voting procedure F by taking F(P, ) to be the most preferred alternative in o
according to f(P). It is easy to observe that Fis a nondictatorial voting proce-
dure and it is left to show that it is nonmanipulable.

We suppose that F'is manipulable. We can assume without loss of generality
that there exists an « € &7, P, P ¢ 2 such that P, = P, and a pair of distinct
alternatives x, y € « such that y = F(P, o) p,F(P, «) = x. Therefore, yf(P) x
and xf(P) y. It follows that xp, y (otherwise unanimity would imply yf(P) x),
hence xp, y. Now since p, # p, and since f( p) and f(p) differ when restricted to
{x, y} if follows by IIA of f that xp,y. Therefore, by unanimity, xf(P)y,
which is a contradiction. The nondictatorship of f implies that F is non-
dictatorial. Q.E.D.
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