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1. INTRODUCTION 

The purpose of this paper is to characterize the domains of individual 
preferences which admit n-person nondictatorial Arrow-type social welfare 
functions (see Arrow [l]), and the domains which admit nonmanip~~ab~e 
voting procedures (see Gibbard [6] and Satterthwaite [IS]). We show that 
the existence of such a function or procedure for a given domain is indepen- 
dent of the number (n) of people for which they are desired, i.e., there exists 
an n-person social welfare function (voting procedure) for a given domain if 
and only if there exists a 2-person social welfare function (voting procedures 
for the same domain. Thus a concept of a domain being ~ondi~tator~a~ or 
nonmanipulable (admitting a nondictatorial social welfare function or 
nonmanipulable voting procedure) can be defined independently of the 
number of individuals in the society. It turns out that these two concepts are 
completely equivalent and we give the characterization of those domains (our 
definition of a nonmanipulable voting procedure assumes a certain rationality 
condition). 

Attempt to overcome Arrow’s impossibility theorem by restricting the 
domains of individual preferences are numerous. The most celebrated example 
is the single peakedness condition originated by Black [2] and extensive!y 
discussed by Arrow [l]. Sen and Pattanaik [lg] discussed the conditions un 
which majority rule which satisfies Arrow’s conditions of unanimity, in- 
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dependence o relevant alternatives and nondictatorship, would also 
satisfy transiti\ ~., For an extensive discussion see Sen’s book [17]. Recently 
additional negative results were demonstrated by Kalai et al. [7]. In this 
paper we consider any social welfare function, not just those based on 
majority rule. 

The equivalence of Arrow’s axioms to axioms of nonmanipulability was 
treated by many authors. One direction of this equivalence was first proved 
by Gibbard [6] and very elegantly by Schmeidler and Sonnenschein [16]. 
Satterthwaite was the first to prove the full equivalence for the case of un- 
restricted preferences in his 1975 paper. Pattanaik [12] proved one direction 
of the equivalence for the cases in which individual preferences may be 
restricted, and a discussion of the possibility of full equivalence for these 
cases appears in Blin and Satterthwaite [3]. 

Maskin studied the question of social choice on restricted domains in 
great depth. In his two papers [8, 91 and verbally, under the assumption of 
anonymity (symmetry of individuals), he characterized the domains which 
admit a 2-person social welfare function, gave the equivalence of an n-person 
function to two, three or five persons functions depending on n, and proved 
the equivalence of Arrow’s axioms to axioms of nonmanipulability. Also, 
since then, independently of us, he studied questions similar to the ones we 
treat here; namely, he replaced the restrictive anonymity assumptions with 
the well-known assumption of nondictatorship, and obtained interesting 
results under a different approach (see Maskin [IO, 1 I]). 

A by-product of our characterization is a generalization of Arrow’s 
impossibility theorem and the Gibbard-Satterthwaite impossibility theorem 
for all the dictatorial domains. (The unrestricted domain is easily shown to be 
dictatorial.) However, we do not deal with the case where the individuals or 
the society are allowed to be indifferent over alternatives. 

We let A denote a set of alternatives with at least two elements, and let 2 
denote the set of all transitive antisymmetric total (i.e., if p E Z then xpy or 
ypx or x = y) binary relations on A. An element of 2 is called a preference 
relation. We let 1;2 be a nonempty subset of 2; the elements of LJ represent the 
admissible preference relations in the society. For an integer y1 > 2, 8” 
represents the set of all n-tuples of preferences from 9 and an element of 52”, 
p = (PI 2 P2 ,*.., p,J E JP, is called an n-person profile. An n-person social 
welfare function (SWF) on r;;! is a function f: Qn ---t Z which satisfies the 
following two conditions. 

1. Unanimity. For every P E LP if P = (pl , pe ,..., pm), X, y E A and 
for i = 1, 2,..., n, xpiy then xf(P) y. 

2. Independence of irrelevant alternatives (IIA). For x, y E A and 
P, Q ~$2~ if [xpiy if and only if xqiy for i = 1, 2,..., n] then [xf(P)y if and 
only if d(Q) ~1. 
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fis dictatoriaal if there exists an i, I < i < pi, for which J(P) = pc for every 
P E L?. fjs nondictatorial if it is not dictatorial. 

2. ~TDEPENDENC~~ cz n 

THEOREM 1. For n 3 2 there exists a rrondictatorial n-peusor? SWF OIZ ,L? 
if arzd m2y if there exists a nondictotoviaE2-person SWF on Q. 

Before we proceed with the proof of Theorem I we need some addirionai 
definitions and lemmas. We say that the n-person SWF f is ~~~~~~#riai vchen- 
et’er tm individuals agree if for every Z < f, j < 12, there exists an integer 
k(i,j) such that for every P E sz”, S(P) = p7C(i,j) whenever pi =: pi . That is, 
k(i, j) is a dictator lvhenever i and j hatle the same prejerences. 

kv!Mh 1. If n > 4 and .f is dictatorial ivheneaer wo indit;iduals agree 
them f is die tatoriai. 

Proof. Tf / A’2 j = 1 then the proof is completed because then f is dicta- 
torial. So we can assume that there are ~9, p2 E Sz and that p1 i p”. Next we 
observe that there must be a pair i, j such that i # k(ii j) #.j- If not, consider 
p = (P”, PI, P2,..., p”). f(P) = p1 and f(P) = p2, a contradiction. So assume 
without loss of generality that k(2, 3) = 1 and we will show that I is a 
dictator for J We first show that f(P) = pr wbelaever pi = pj for some 
1 < i, j < n and i # j. If i # 1 f j and k(i, j) = s f I let P be defined by 
p1 = p1 and pi = p2 for i = 2, 3,..., n. Since 2 and 3 agree in P it follows that 
f (p> = pi and since i and j agree in P it follows that,P(p) = ps = p2 f pl, a 
contradiction. Therefore k(i, j) = 1. In the other case, one sf the individuals 
i andj, say i: is 1. If 2 f j i 3 then we let P be defined by pr = pj = p1 and 
ps = p’ for 1 + s #j. It follows (2 and 3 agree) that J(P) = 1~~ . Fina!!y if 
j = 2 orj = 3, sayj = 2, then since we know already that k(3. 4) = 1 we can 
let 3 and 4 assume the rolls of 2 and 3, respectively, and we are back in the 
case wherej is different from the two distinct individuals. 

So we showed that there must be an indisidttal i such that whenever two 
individuals agree i is a dictator. Now since FZ >, 4 for any pair of alternatives 
X, y at ieast two individuals must agree on this pair so (by HIA) i is a dictator 
for this pair. Q.E.D. 

We cali 8 pair of distinct a&ernativrs x and 4: trivi& if there are no pl, p” E $1 
such that xp’y and yp3x. Thus the pair X, 1) is trivial if there is always un- 
animity on it. 

Let p E- 52. Define p-l E Q to be the preference relation which reverses the 
ordering of all the nontrivial pairs and keeps the orderings of all trivial pairs. 
Notice ihatp+ may not exist but when it does it is unique and (p-l)-: = pi 
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Two preferences pl, p2 E 9 are connected if there exists a nontrivial pair 
x, y E A such that xply and xp”y, i.e., if they agree on a nontrivial pair. 

Notice that for every p E Sz there is at most one (possibly none) jj E .!J 
(namely, p-1) which is not connected to it. Two preference relations pl, p2 are 
indivectIy connected if they are connected by a finite chain of connected 
preferences, i.e. there exist @, q2 ,..., q* such that pl = q1p2 = 9% and qi is 
connected to qi+l for i = I, 2 ,.-., n - 1. 

LEMMA 2. If any two elements of Q are indirectly connected andf is a 3- 
person SWF with the property that for every p E 52 there is an i(p), 1 < i(p) 
< 2, such that f (pl , pz , p) = picp) then f is dictatorial. 

Proof. If / &’ 1 = 1 then the lemma is trivially true. If 1 9 1 >, 2 then 
clearly i(p) is unique for every p (consider a profile with a conflict between 
individual 1 and individual 2). We will show that i(p) = i(p’) for every p, 
p’ E 52 and thus i(p) is a dictator forf. It suffices to show that i(p) = i(p’) for 
every pair p, p’ which are connected. Suppose p and p’ are connected through 
the nontrivial pair X, y. Let pl and p2 be preferences for which xp’y and yp2x. 
Consider the two profiles P = (p’, p2, p) and P’ = (p’, p2, p’). Since p and p’ 
agree on x, y and since there is a conflct between 1 and 2 on x, y it follows by 
IIA that i(p) = i(p’), Q.E.D. 

We define the minority vule 3-person SWF f as follows. For every P = 

xf(p) y if and only if either xp,y for i = 1,2, 3 or two pi’s prefer y 
to x and the third p, prefers x to y. 

LEMMA 3. If the 3-person minority rule is a well-dejined SWF on 9 then 
there exists a 2-person nondictatorial SWF on Q. 

PPOOJ Choose any p E J2 and define g,(p, , p2) by 

xg,(p, , p2) y if and only if either xp,y and xp,y or only one of 
p1 , p2 prefers x to y and p prefers y to x. 

It is clear that g, is well defined and satisfies unanimity and HA. We have to 
show that > = g,(pl , pz) is transitive for every p, p1 , pz E Q. Suppose this 
is not the case, i.e., there exist x, y, z E A such that 

x>y>z>x. 

Case 1. x > y by unanimity of 1 and 2 and the same for y > z. But then 
x > z by unanimity, a contradiction. 
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Case 2. x > y by unanimity and y > z not by unanimity. Assume without 
loss of generality yplz, zp2y, and zpy. Since z > x we must have qp,x and xpz. 

ut then we have for the minority rule functionf 

Case 3. y > z by unanimity and x > y not by ~~al~irnity. Assume without 
loss of generality that xp,y, yp2x and ypx. Since z > x we must have zpp7%x 
and xpz. JRut &s we have xf Cm ,A ,P> y f(pI , A, P> z.fh ,A , P> x9 a. 
contradiction. 

Case 4, x > y not by unanimity and y > z not by unanimity. Assume 
without loss of generality that xp, y, ypzx and ypx. Also, since y > .z not by 
unanimity, we must have zpy. Thus by transitivity of p we have zpx. So in 
order to have z > x we must have zp,x and zp,x. Therefore 
have zp, y and since we have y > z we must have yp2z. But now we get 
xf(p, , p2 , p> yf (PI 9 p2 , P) zf h 9 p2 , PII x, a co~t~a~i~~~o~. QED. 

Proofof T&orem 1. Let f be a nondictatorial 2-person SWF on Q. 
Define g : ~2’~ + 2’ by g(pl , pz ,..., pa) = f (pl ~ p& It is easy to see that g is 
a nondictatorial n-person SWF. 

Ts prove the other direction we show that for n > 3 if a nsndictatorial 
n-person SWF on 92, f, exists then there exists a nondictatorial (IZ - 1) 
person SWF on 9, g. We f%rst show it for n >, 4. For 1 < i < j < n we 
define gi,$ by 

lin other words g,,j replicates i’s preferences in the jth place, shifts pi ) 
Pjt1 7.e.3 P%-~ up by one place and then uses J? lit is easy to see that all the 
gi,j’s are (n - l)-person SWF’s and we claim that at least one sf them 
is nondictatorial. Suppose that this is not the case; i.e., all thegi,j’s are 
dictatorial. That implies, for f, that whenever two of its arguments are the 
same f is dictatorial. By Lemma 1 it follows that f is dictatorial which is a 
contradiction. 

Now we assume that n = 3. We consider first the case where !Z consists of 
only two elements of the type p and p-l. In this case we define the 2-person 
nondictatorial function g by g(p, , pz> = p if either p1 = p or p2 = p and 
g(p, , pJ = p-l if both p1 = p2 = p-l. It is easy to check that g(P) is transi- 
tive and that g satisfies the unanimity condition, and since 32 = (p, p-l) it 
follows that g satisfies IIA. Thus in this case there exists a 2-person non- 
dictatorial SWF g. In the second case B is not of the form described above; 
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thus any two elements of Sz are indirectly connected. We assume jirst that 
there are two individuals say 1 and 2, that are decisive for every pair of 
alternatives; i.e., for every X, y E A and everyp, , pz , p3 E Q if xpi y for i = 1,2 

then xf(pl i pz ,P& Y. For everyp E Q we define g,(pl , P& = f(pl , pz , P). It 
is clear that all the g,‘s are 2-person SWF’s (unanimity follows from the 
decisiveness of (2,3)) and by Lemma 2 it follows that if they are all dictatorial 
then so isf: So there exists a 2-person nondictatorial SWF g, . 

Finally, if no pair of individuals is decisive for all the pairs we again con- 
sider two cases. In the first case there is an individual, say 1, who is not 
weakly decisive for all the pairs; i.e., there exist pl, p” E 9 such that f(pl, p2, 
$) f p’. We can define g(p, , p2) = J(pl , p2, pJ and g is a Z-person non- 
dictatorial SWF. In the second case every individual is weakly decisive for 
all the pairs. In this casefmust be a minority rule SWF on .CJ and by Lemma 3 
there exists a 2-person nondictatorial SWF g on !Z. Q.E.D. 

3. CHARACTERIZATION OF NONDICTATORIAL DOMAINS OF PREFERENCES 

We say that the set of preferences Sz C z‘ is nondictatorial if there exists a 
nondictatorial n-person SWF on 8. This definition is independent of n for 
y1 > 2 by Theorem 1 (for n = 1 every SWF is dictatorial by unanimity). 
Examples of dictatorial families are any B with 1 52 I = 1 (by unanimity) and 
the whoie space 2 provided that there are at least three.alternatives (by a well- 
known theorem due to Arrow [l]). Single peaked preferences on a line (see 
Sen [17] and Black [2]) is an example of a nondictatorial family. The purpose 
of this section is to characterize all the nondictatorial families of preferences. 

We let T = {(x, y) E A x A : x # y>, XR = {(x, y) E 7’ : there is no 
pl E J2 and p2 E &’ such that xply and yp”x> and NTR = T - TR. Thus T 
consists of all distinct ordered pairs, NTR consists of the nontrivial ordered 
pairs (both xply is feasible by somepl E D and yp2x is feasible by somep2 E a), 
and TR consists of the trivial pairs (either xpy for all p E .Q or ypx for all 
PEQ). 

We say that a set R C T is closed under decisiveness implications (closed DI) 
if for every two pairs (x, y), (x, z) E NTR the following two conditions are 
true. 

DI 1. If there are pl, p2 E G’ with xplyplz and yp2zp2x then 

DIla. (x, y) E R implies that (x, z) E R, and 
DIl b. (z, x) E R implies that (y, X) E R. 

D12. If there is a p E G with xpypz then 

DI2a. (x, y) E R and (y, z) E R imply (x, z) E R, and 
DT2b. (z, x) E R implies that either (y, x) E R or (z, y) E R. 
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We say that f2 is decomposable if there exists a set R, with TR & R g T, 
which is closed under decisiveness implications. 

?hiEOREM 2. !2 is nondictatorial if and only ifit is decomposabk. 

LEMMA 4. Let RI C T, TR ,C R1 g T, RI is closed under deci~ive~e~~ 
implications, and R2 = TR U {(n, y) E T: (y, X) $ -RI], tken TR $ R2 $ T and 
R, is closed under decisiveness implications. 

Proof. It is clear that 7% g R2 g T. go show that pi2 is closed D5 we 
assume that (x, y), (x, z) E NTR. 

To show DI 1 for R, we assume that for some ~9, p2 E Sz zp”yplz and yp% 
pzxV We assume contrary to DIla that (x, y) E Rz and (x, z) 4 R, . Since 
(x, y), (x, I) E NTR it follows that (y, x) # RI and (z, X) E 17, . Ilb of RI 
we get a contradiction so that DIla must hold for R, . Assu contrary 
to DI lb for Rz , that (z, X) E R, and (y, x) $ RR, we see that (x, z) $ R1 and 
(x, y) E R, . This contradicts DIla for RI , thus R, must satisfy DIlb. 

To show that R, satisfies DI2 we assume that for some p E 9 x p y p z. 
assume, contrary to DI2a for R, , that (x, y) E R, z)ER2,and(x,z)$R,. 
This implies that (y, x) $ R, and (z, X) E R1 e B of R, it follows that 
(zz, y) E R, ~ This implies that (y, z) G TR by nition of R, L Since 
(x, z) E N it follows that there must exist p2 E s1 for whi 
DIla for R, ) which was already proved, shows that (x, z) E 
diction. To show that R, satisfies DI2b we assume, per a 
(z, x) E R, , (y, x) $ R, , and (z, y) $ R, . It follows that (x, z) 6 R, and 
(x, y) E R, . If (yi z) E NTR then (y, z) E RI , which contradicts 
Ri e So it must be that (y, z) E TR. But then, by the fact that (x, z) E ?b’T7 it 
follows that there is a pa E 9 for which yp%p%. Now Dlla for RI is contra- 
dicted, which completes the proof of the lemma. 

Proof of Theorem 2. We first assume that 9 is ~o~dictatoriai. By 
Theorem 1 there exists a nondictatorial 2-person social welfare function ,f on 
Q. We let R, be the set of pairs for which voter 1 is decisive, i.e., 

R, = ((x, y) E T: for every P E Q2 if xply then X$(P) y>= 

3t is clear that R1 3 TR. If RI = TR then 2 is a dictator so R1 ZJ 
if R1 = Tthen 1 is a dictator so TR $ RI L$ T. 

Wow we show that R, is closed IX, so we assume that (x, y), (x, z) E NT&. 
To show DIl we assume that for some pl, p” E 9 xplyLvlz and yp2z$k Contrary 
to Dlla, we assume that (x, y) E R1 and (x, z) C$ R, . Consider the prof8e 
B = (p’, p”). xf(P) y because (x, y) E R, yfffP> z by unanimity. So by transi- 
tivity x$(P) z. Thus, IIA implies (x, z) G R 1 , a contradiction. Contrary to 
DIlb we assume that (z, X) E R, and (y, X) 6 RI . Consider .P = (p2,pz). 
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yf(P) z by unanimity and zf(P) x because (z, X) E R, . Thus yf(~) X. 
Therefore, by IIA, (y, x) E .RR1 , which is a contradiction. 

To show D12 we assume that for some p E J2 xpypz. We assume, contrary 
to DI2a, that (x, y) E RI , (y, z) E R, , and (x, z) $ R, . Consider any P with 
p1 = p. xi(P) y because (x, y) E R, , and yf(P) z because (y, z) E RI . By 
transitivity xf(P) z. IIA implies that (x, z) E R, , a contradiction. Finally we 
assume, contrary to D12a, that (z, X) E R, , (y, X) 6 R, , and (z, y) $ RI . 
Since (x, z) E NTR there is a p1 E D with zplx. Consider P = (p’, p). zf(P) x 
because (z, X) E R, , xf(P) y because (y, z) $ R, . So zf(P) y by transitivity. 
Thus IIA shows that (z, y) E R, , a contradiction. 

Notice that we could have defined R, to be the set of pairs for which 2 is 
decisive. This would demonstrate where the structure of Lemma 4 arises. 

Now we assume that Q is decomposable by a set RI which is closed DI and 
satisfies TR 2 RI $ T. We define R, = TR U {(x, y) E T: (y, X) $ RI}; then 
by Lemma 4, R, is closed DI and TR $j R, & T. We define f: Q2 -+ 2 as 
follows. xf(P) y if and only if one of the following three situations occurs: 

1. Unanimity. xpi y for i = 1,2. 

2. Decisiveness of 1. xp2 y and (x, y) E: R, . 

3. Decisiveness of 2. xp2y and (x, y) E R, . 

We first show that for every (x, y) E T, xf(P) y or yf(P) x but not both. If 
both, then neither of them could have occurred by unanimity; also, they 
could not both occur by decisiveness of the same voter. So assume without 
loss of generality that xp, y, (x, y) f RI, yp2x, and (y, X) E R, . But this 
shows that (x, y) E NTR and contradicts the definition of R, . Now assume 
that neither xf(P) y nor yf(P) x. We can assume without loss of generality 
that xp, y and yp2x. So (x, y) E NTR, (x, y) $ RI, and (y, X) 4 R, , a contra- 
diction. 

Next we observe that f is nondictatorial because R, # T and R, # T, f 
satisfies IIA since it is defined on pairs, and f satisfies unanimity by definition. 
Finally we show that for every P,f(P) is transitive. We assume to the contrary 
that there is a P for which > = f(P) is not transitive, i.e., for some x, y, z, EA 
X>Y>Z>X. 

Case 1 

x > y by unanimity, and y > z by unanimity. In this case x > z by 
unanimity, a contraiction. 

Case 2 

x > y by unanimity and y > z not by unanimity. Since the properties of 
R, and R, are completely symmetric we can assume without loss of generality 
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that y > z by decisiveness of 1. Thus xp, yplz, (y, a) E R, and since z > x 
we must have zpzxp, y and (z, x) E R, . DIl b of R1 implies that (x, zj E R, , 
which contradicts the fact that (z, x) E R, . 

Case 3 

x > y not by unanimity and y > z by unanimity. We can assume without 
loss of generality that x > y by decisiveness of 1; thus we must have xp, yp,z 
and (x, y) E RI . Since z > x we must have yp2zpp2x and (z, xj E R, I DJla of 
R, implies that (x, zj E R, , which contradicts the fact that (zt X) E R, . 

x > y not by unanimity and y > z not by unanimity. If both of these 
preferences occur by the decisiveness of the same voter, say 1, then we must 
have xpl yplz, zpz yp2x, (x, y) E R, (y, z> E R, and (z, xj E & . But DI2a of 
R1 implies that (x, z) E R, , which contradicts the fact that (zi x) E 
assume without loss of generality that x > y by the decisiveness of 1 and 
y > z by the decisiveness of 2. So we have xp, y, zpl y, yp2z, ypzx, (x, y) E 
and (y, z) E R, . Since z > x one of the following subcases must occur: 

Subcase 4a. zpix for i = 1,2. In this case DIla of R, implies that (y? X) E 
21 ) which contradicts the fact that (x, y) E R, . 

Subbcuse 46. zplx, xp,z and (z, X) E RI . In this case (zz, x), (x, y) E I?TR; 
thus DI2a of RI implies that (z, y) E R, . Since (z, y) E KU? this contradicts 
the fact that (y, z) E R, . 

Subcase 4~. xp,z, zpzx and (z, x) E R, . in this case 2a of R, implies 
that (y, X) E R, , which contradicts the fact that (x, yj E R, . 

This completes the proof of Theorem 2. 

Plemskrks. From Lemma 4 and the proof of sufficiency it is clear that we 
could have defined decomposability somewhat differently; S is decomposable 
if there exist two sets R, and R, such that TR g bit $ T, closed under deci- 
siveness implication and satisfying for all (x, y) E NTR, (x, y) E 
only if (y, x) $ R, . These two definitions are equivalent (see Lem 
the difference is in appearance only. (It is easy to show that in this definition, 
condition DI2b is redundant. This adds somewhat to the external difference.j 
We let & be the set of pairs for which i is decisive, thus having the hollowing 
intuitive meaning to the condition: 

exist at least two individuals with some power of decisiveness 
( _ & The condition that (x, y) E Ri iR (y, X) $ R, guarantees the 
antisymmetry of the SWF. Ri being closed under the decisiveness implication 
guarantees the transitivity of the SWF. 
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4. APPLICA~ONS 

To show the usefulness of Theorems 1 and 2 we discuss the following 
examples. 

EXAMPLE 1. Arrow’s theorem. If r;L = Z and / A j 3 3 then all the 
relations between any three alternatives are possible. This shows that the 
only sets which are closed under decisiveness implications are @ and the set 
of all pairs; i.e., there is no nontrivial decomposition. Thus every SWF must 
be dictatorial. 

EXAMPLE 2. Single peak preferences (see Black [2] and the other standard 
texts). Let q G 2, and define the set of single peaked preferences relative to the 
linear order q by J&, = (p E 2: for every three distinct alternative x, y, z if 
x q y q z then it is not the case that xp y and zp y}. To show that a, has 
nondictatorial n-person SWF’s for every y1 > 2 we must show that J2 is 
decomposable. Let R, = {(x, y) E T: xqy). Clearly ia = TR g R, g T. All 
that is left to show is that R, is closed under decisiveness implications. 

DIla. We suppose that (x, y) E R, and for some pl, p2 EL?, xplyplz 
and ypzzp2x. These relations imply that in q, x cannot be between y and z, 
and z cannot be between x and y. Thus y must be the middle one and since 
xqywemusthavexqyqz.Thus(x,z)ER,. 

DIlb. (z, x) E R, , xply plz and yp2zp2x. Again y must be the middle 
one so we must have z qy q x. Thus (y, x) E RI . 

DI2a. (x, y) E R, , (y, z) E R, and for some p E Sz, , xp yp z. This 
shows that x q y q z. Thus (x, z) E RI . 

DI2b. (z, x) G RI and for some p E Sz, , xp yp z. This shows that z qy 
or equivalently (z, y) E RI . Q.E.D. 

It follows by Theorems 1 and 2 that a family of single peak preferences 
admits nondictatorial n-person SWF’s for every n 9 2. 

5. A CHARACTERIZATION OF DOMAINS ADMITTING NONMANIPULABLE VOTING 
PROCEDURES 

The existence of a nonmanipulable voting procedure on a given restricted 
domain is interesting on its own merits, and not just because of its equivalence 
to the existence of an Arrow social welfare function (which we will show). 
Imagine a sociaty for which it is known a priori that all individuals have 
single peak preferences. This knowledge may come about by a prior analysis 
or by historical experience and it is shared by all individuals in this society. 
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Restricting the individual to vote in a single peak fashion presents no restric- 
tion, and majority rule is a good nonmanipulable procedure for such a society. 
Are there other types of societies for which this situation is possible? The 
answer to this question is given by our characterizatioa. 

Tne question of strengthening the result by el~rn~~~t~ng the reqn~re~~e~t 
that the stated preferences (ballots), as well as true preferences, are restricte 
is still open. Blin and Satterthwaite [4] dealt with the case of majority rule 
and single peakedness. They showed that the restriction of single peakedness 
on preferences alone without a restriction on admissible ballots is not sufi- 
cient to guarantee nonmanipulability of the (generalized) majority rule. 

Our assumption here is that the voting procedure will count only those 
ballots which conform to the society’s known restriction, since any other 
stated preference is insincere. The resulting voting procedure wih be non- 
manipulable if and only if Q (the adrn~ss~b~~ true preferences) is 
decomposable. That is, the same restriction that guaranteed the existence of 
an SWF will guarantee the existence of a no~rnan~~~~lab~e voting procedure. 

An n-person voting procedure is a function F: J&P x tpt-+- A, where 
GZ is the set of all nonempty subsets of A. We will assume that ah voting 
procedures satisfy the following three conditions. 

1. Feasibility. For every 01 E OL and every P E Q”, F(P, a) E U. 

2. Independence of nonoptimal alterRatiues (PNOA). For every P E LY 
and every z E 6Y if p C 01 and F(P, a) E /3 then I$?, p) = F(P, a). 

3. Lkanimity. For every P EJP and every a: E 01 if x, y E 01 and 
xpp, y for i = 1, 2 ,..., ok then y # F(P, a). 

P: is dictatorial if there exists an individual i such that for every P E LP and 
every oi E Oc, F(P, OQ is ith top choice among the alternatives of a, i.e., F(P1 a) 
pi y for every y E u withy # F(P, a). 

F is manipulable if there exists an 01 E 6?, and P, P E 52% such that for some 
&pi f pi , for every s + ip, = j? and F(F, z)p+F(P, a). See lin an 
Sattert~wa~te [3] for a discussion of the definitions above. 

-kEQREM 3. Let n be any integer, n 3 2. The fQ~l~~~~ng three statements 
are equivalent for every Q C Z. 

I. Q admits an n-person nondictatorial ~~~~rn~~ip~l~ab~e voting 
procedure. 

2. l2 admits an n-person nondictatorial social welfare jknction. 

3. .O is decomposable (recall that being decomposable is a property 
M&ich is independent of n). 

Thus Q admitting an n-person nondictatorial ~~on~~a~~~~~able voting 
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procedure is a property which is independent of n, is equivalent to admitting 
a nondictatorial social welfare function, and can be checked through the 
decomposability property given in Theorem 2. The equivalence was discussed 
by Blin and Satterthwaite [3] after Pattanaik [12] had proved it in one direc- 
tion. Our proof is similar to a proof by Maskin but it relies heavily on our 
Theorem 1, which enables us to discard his assumption of positive association. 

Clearly our applications in examples I and 2 are still valid. So that in our 
setup we obtain the Cibbard-Satterthwaite result as a corollary to Theorem 3. 
Also, Theorem 3 assures us the existence of a nonmanipulable voting proce- 
dures for any number of people in the cases where the preferences are restric- 
ted to be single peaked. 

Proof of Theorem 3. Clearly if D admits a 2-person nondictatorial 
nonmanipulable voting procedure then it does the same for yz people (take the 
extra players as dummies as in the proof of Theorem 1). Therefore, by 
Theorem 2, it suffices to show the following two facts. If G admits an n- 
person nondictatorial nonmanipulable voting procedure then G is decom- 
posable. And, if LJ is decomposable then it admits a 2-person nondictatorial 
nonmanipulable voting procedure. 

To establish the first fact we assume that F is a nondictatorial nonmani- 
pulable n-person voting procedure on J2 and we define the n-person SWF P as 
follows. For P E 8” and X, y E A, xp(P) y if and only if F(P, (x, y>) = x. 
INOA guarantees that P(P) is well defined. Unanimity of P follows by un- 
animity of F. Also the nondictatorship of F implies that P is nondictatorial. 
To show that P satisfies IIA we use the Schmeidler-Sonnenschein method [ 161. 
If p does not satisfy IIA then there are two profiles P and Q and a voter j 
such that pi = qi for i fj, pj agrees with qj on the pair {x, y>, and P(P) 
disagrees with P(Q) on the pair {x, y}. It is clear then that voter j can mani- 
pulate either F(P,{x, y}) or F(Q, (x, y}) in this case. Thus P is a well-defined 
nondictatorial n-person SWF. 

To establish the second fact we assume that D is decomposable. By 
Theorem 2 there exists a 2-person nondictatorial SWF f on Sz. We define the 
voting procedure F by taking F(P, a) to be the most preferred alternative in a! 
according to f(P). It is easy to observe that F is a nondictatorial voting proce- 
dure and it is left to show that it is nonmanipulable. 

We suppose that Fis manipulable. We can assume without loss of generality 
that there exists an OL E LX, P, P E Q such that Pz = P, and a pair of distinct 
alternatives X, y E 01 such that y = E(p, a)p,F(P, a) = x. Therefore, yf(p) x 
and xf(P) y. It follows that xp,y (otherwise unanimity would imply yf(P) x), 
hence x&y. Now since @r f p, and sincef(p) andf(p) differ when restricted to 
{x, y) if follows by IIA off that x&y. Therefore, by unanimity, xj(-iri> y, 
which is a contradiction. The nondictatorship off implies that F is non- 
dictatorial. Q.E.D. 
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