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Abstract

The role of history in determining market process is widely acknowledged by economists,
History can affect the market interaction in different ways, It can affect agents' behavior
as well as the evolution of the type of market interaction over time. Differential games
is a class of continuous time dynamic games in which players interact along time and the
game is structurally dynamic. What characterizes differential games is that the transition
of the state variables is determined only by the current state and the action taken by
players and it is independent of the history leading to this state. In this paper we would
like to extend the framework of differential games and introduce and discuss a class of
dynamic games which we will denote as integral games. In this class of games the
evolution of the state variable is given by a nondegenerate integral equation and thus the
framework is capable of modeling a problem in which the whole history affects the
changes of the state variables.

1. INTRODUCTION

The role of history in determining market process is widely acknowledged by
economists. In a recent interesting paper David (1988) discussed the different aspects
of the path dependent process and the role of history in economic analysis. History can
affect the market interaction in different ways. It can affect agents' behavior as well as
the evolution of the type of market interaction over time (for a discussion see also Kreps
and Spence (1986)). Specifically, firms as well as other economic agents can condition
their behavior on the history of the interaction. Discussing the market interaction as a
repeated game gives rise to many interesting equilibria in which firms use history
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dependent strategies, Such a dependence enables players to use trigger strategies or to
credibly threaten one another. At the same time the history may affect the evolution of
the market game such that it determines the agents' payoff function as well as their
available strategies. This type of effeet is usually captured by state variables the
evolution of which is determined by the players' actions. A useful framework for
analyzing such a dynamic interaction is the dynamic games framework.

Differential games is a class of continuous time dynamic games in which players
interact along time.! The game is structurally dynamic as there are state variables,
which are changed along time according to some evolution functions, and the players’
payoffs depend on these state variables as well as on their own actions. What
characterizes differential games is that the evolution function is given by some
differential equations that specify the changes of the state variables as a function of time,
the players' choice of control and the value of the state variables at that time. Such a
framework limits the discussion to economic problems that have a Markovian structure,
i.e,, the transition of the state is determined only by the current state and the actions
taken by players and it is independent of the history leading to this state. Clearly,
assuming such a structure might be restrictive when we come to model dynamic
economic phenomena. In many interesting economic problems, the evolution of the state
variables depends on the whole history of the game. As an example we can consider a
model of capital accumulation game in which the depreciation rate might depend on the
age of the capital or the machines the firms accumulate over time. Another example can
be a learning-by-doing model in which the effect of production on experience clearly
depends on the date at which the production took place. The depreciation cannot
capture this effort as a constant depreciation rate implies that both recent experience and
ones that accumulated in the past are depreciated at the same rate.

In this paper we would like to extend the framework of differential games and
introduce and discuss a class of dynamic games which we will denote as interal games.
In this class of games the evolution of the state variable is given by a nondegenerate
integral equation and thus the framework is capable of modeling a problem in which the
whole history affects the changes of the state variables. Clearly one can view differential
games as a special class of integral to differential equations. Orié can expect that such
a generalization introduces additional complexity into the analysis. We thus discuss in
the paper the various problems that arise in extending the standard differential game
framework to integral games and in particular the problematic extension of the standard
strategy spaces {or information patterns). We present the necessary conditions that the
open loop Nash equilibrium strategies satisfy and discuss the classes of game in which
the open loop Nash equilibrium is also a subgame perfect Nash equilibrium.

We emphasize that this is only the first step in analyzing the integral games'
framework and, indeed, there is more work that must be done in order to fully
understand the type of equilibria that can arise in such a framework. We surmise,
however, that this framework can capture more completely the role of history in dynamic
interactions and thus can be helpful in modeling such phenomena.
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2. A SIMPLE EXAMPLE OF NONDEGENERATE HISTORY
DEPENDENT EVOLUTION: THE CASE OF CAPITAL
ACCUMULATION AS AN INTEGRAL GAME

Before defining integral games we would like to give a short example that
demonstrates the type of problems that can be handled by the use of integral games.

A capital accumulation game is a class of dynamic games in which each player
accumulates some form of capital according to

dx fdt = 2 = u(t) = 8%, (), 5 ,(0) = x5 { = Ly 1

where x; '(t) is the capital of player i at time t, d; is a constant history independent
depreciation rate and ; (t} is the investment of player i at time t. The players' payoff
in this class of games is

7= fFi(x(t),u(r),r)d: i=1,.,n @
0

where x(t) = (x; (1), X, ()%, (1)) and u(t) = (u,(t), uy(t),..,u(t)). For more details
about investment and capital accumulation games see Spence (1979), Fudenberg and
Tirole (1985), Fershtman and Muller (1984, 1986), Reynolds (1987), Leitman and
Schmitendorf (1978), Dockner and Jorgensen (1984), Feichtinger (1983), and Dockner
(1984). The two laiter models are general differential games for which open loop and
closed loop equilibria coincide. For more details about differential games and solution
concepts see Reinganum (1982), and Dockner, Feichtinger and Jorgensen (1985).

Characteristic to this class of games is that the control chosen by player j does not
affect the payoffs of player i, nor the changes of x, j # i, i.e., each player is independently
accumulating a capital.

Equation (1), which governs the evolution of the state variables along time, is
equivalent to the following integral equation:

50 = x(0) + [ Vug)ds ®

0

In assuming a differential game framework we limit our discussion only to
Markovian structure, i.e., the evolution of the state variables (1) depends only on the
actions of the players at time t and the state variables at time t. This assumption
implies, for example, that in the capital accumulaltion problem the depreciation of the
capital (see equations (1) and (3)) does not depend on the date at which this capital was
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constructed. Specifically, let us define the stock of capital as follows:

x (1) = x,(0) + j u, (s)e 1O 05 @)
[}

Equation (4) is an integral equation that cannot !Je reducec‘i to a differ.enyial
equation. It allows us to model situation in which "old" capital has a higher de:prematlon
rate than a "new" capital. Such a situation, as was stated above, cannot bq discussed as
a differential game, as Bq. (4) cannot be reduced to a differential equation, and thus
calls for the development of a more general framework. In a monopoly market structure
this capital accumulation problem was investigated in Muller and Peles (1990).

3. NOTATIONS AND DEFINITIONS

3.1. Definitions of Integral Games )
We define an integral game as a class of dynamic games (N, U, X, J, §, 2) such

that:

)] N = {1,..,n} is a set of players.

(ii) U = (U,,..,U,); U, is a set of admissible controls such that at every
t player i chooses u, € U2 ‘

(iii) X e R™ is a set of all possible vectors of state variables. )

{(iv) J = (J,..],) where J; is the objective function of player i
Specifically, we let

T .

J = fFi(t,x(t),u(t))dt i=1,.,n 4 )
0

where x(t) = (% (1),--%,(0)) and u(t) = {u{t),...,0,(t)). ]

¥) I = (I,..],), where I is an integral eq}lations thf:lt determine the
value of x; at any specific date. Specifically, I, will be defined by
the following equation:

xj(t) =Xy * ij(r,x(s),u(s),s)ds j=Llym. (6)
0
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Note that formally differentiated games can be considered as a subclass of integral
games. This is the case when the integral equation (6) can be reduced to a differential
equation. Such an integral equation is reducible if, for example, 3f/3t = 0, i.e., f does
not depend on t, or in the general case when df/dt = c(t) fj(x(ss, u(s), s) for some
function ¢(t). In the general case, however, (v) implies that the evolution of the state
variable might depend on the whole history of the game and is not reducible.

There are several standard types of information patterns, z(t), in dynamic games
literature (see Basar and Olsder (1982)).

z{t) = {x}: open loop

z(t) = {x()}: feedback

z{t) = {x(v), v € [0, 1]} in which the players know the whole history.
Sometimes this is referred to as closed loop (with memory),

In principle we can extend the use of these information patters to integral games.
However, such an extension needs some further elaboration before being applied.

3.2. Open Loop Strategics

In a differential game setting the open loop strategy is a time path of actions w,(t)
that specifies the {'th player's actions at every t. Each player is fully committed to this
path at the outset of the game., Clearly one can discuss integral games with open loop
strategies, Formally, one can view the open loop strategies as function that assigns for
every initial condition the whole path of control. Thus, in extending the open doop
strategies to integral games, one needs to re-examine the meaning of initial conditions.
By saying that the information set is {x,} we mean that the players can observe the state
of the system at time zero. Observe also that in our definition of integral games
equation (6) which specifies the state of the system at period t does not depend on the
history prior to time zero or more specifically on the actions leading to the initial state
%o. This is, however, only a special case. The importance of the way we define and
incorporate the initial state becomes obvious once we discuss the time consistency issue.

A well-known and trivial observation is that in differential games open loop Nash
equilibrium is time consistent. That is to say that if we ask the players, at some
intermediate time, whether they wish to revise their strategies they will stick to the
original equilibrium strategies. The reason for this is that the truncated strategies
consitute an open loop Nash equilibrium in the game that starts at that particular
intermediate point. Discussing this time consistency property for the open loop
equilibrium of integral games gives rise to the following technical problem: even if at
time zero the only relevant information is x(0) still if we look at the game that starts at
some intermediate point y and discussing the open loop Nash equilibrium of the game,
some difficulty arises as the players cannot rely only on the knowledge of the state of the
system at the intermediate point. They need to know the path of actions between time
zero and the intermediate point in order to use equation (6) and calculate the state of
the system at some future periods. Thus, when discussing integral games one needs to
modify the definition of open loop strategies, .

Let h, be the history prior to time t. An open loop strategy in integral games is
a path u; (hy, t). The player conditions his actions on the history prior to the outset of
the game and the value of the state variable at the outset. We later on specify the
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necessary and sufficient conditions for such open loop Nash equilibrium.

3.3, Feedback Strategies

The feedback Nash equilibrium is the one most commonly vsed in economic
applications. Each player in this case adopts a decision rule that specifies his action at
sime t as a function of the state variables at that time. The use of such strategies is
intuitive once one has a Markovian structure. Moreover, in a differential game setting,
if one player uses a feedback decision rule, his competitor cannot gain anything if he is
in possession of information regarding the specific history of the game or if he conditions
his actions on this knowledge. Thus the feedback Nash equilibrium is in particular also
an equilibrium when we consider history dependent strategies.

In the integral game framework, letting the players have feedback information
patterns implies that although players know the state of the world they do not know how
it will evolve over time, since this evolution depends on the history of the game which
is not known to them. Clearly one can formally define feedback equilibrium in integral
games, but then one should consider a game with incomplete information since each
player does not know the type of his competitor and moreover his own type when the
type is defined by the past actions of each player.

3.4. Closed Loop (History Dependent) Strategies

Let b, be the history up to period t. A history consists of control combination
{u () J7e 0, t]}, i = 1,2. We let H, denote the set of all possible histories of length
t. A closed loop strategy is a function that prescribe a control for every history h, € H,.
Thus, the closed loop strategies space can thus be considered as the history dependent
strategies space.

Clearly, most economic problems should be analyzed using the closed loop
(history dependent) strategy space. And such an analysis is an essential part of applying
integral games in economic analysis. But such an analysis is beyond the scope of this
paper and is part of our future research agenda.

3.5. Classes of Integral Games for which the Open Loop Nash!'Equilibrium is a Special

Case of Closed Loop (History Dependent) Strategies

As the subgame perfect feedback Nash equilibrium in a differential game is in
most cases not tractable there has been extensive research identifying the classes of
games for which the open loop Nash equilibrium is also a feedback equilibrium (see, for
example, Mehlman and Willig (1985), Reinganum (1982), and Dockner, Feichtinger and
Jorgensen (1985)).

In discussing integral games one can discuss the classes of games for which the
open loop Nash equilibrium is also a (subgame perfect) closed loop Nash equilibrinm.

Fershtman (1987) identified the necessary and sufficient conditions for the above
equivalence for differential games. Specifically, this condition implies that once the open
loop equilibrium is invariant under changes of the initial conditions, then the open loop
is also a closed loop equilibrium. One can extend these conditions to integral games and
use them for the identification of subgame perfect open loop Nash equilibria. As an
example, let us consider an exponential integral game denoted by G, such that
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"
I = J;[e'“e”‘(l)F(u)dt

Where x; (t) is a state variable and u is a vector of control determined by the following
integral equation:

x,(1) = x,(0) + ff(:,u(s),s)ds, i=1lun.

Let us use the state transformation y = x-x(0), and let A; = ", The game G, is now
equivalent to the following game (G,):

T
o= 4 | e e OF () ds
pi]

subject to

v, (1) = ff(r,u(s),s)ds, i=1..n.
]

Clearly the solutions are invariant under multiplications of the payoff function by a
constant. Thus, for this class of games the open loop Nash equilibrium is invariant under
cl-fanges of the initial conditions as every open loop Nash equilibrium for the game G,
with the initial condition x(0) is also an open loop Nash equilibrium for the game G, that
is identical to G, but for the initial condition x(0) = 0.

‘ This implies that for this class of integral games, the open loop Nash equilibrium
is also a closed loop history dependent Nash equilibrium.

4. NECESSARY CONDITIONS: OPEN LOOP

For the sake of tractability we consider in this section only games for which m =n
{the case of m < n can be followed immediately).
_ A Na_sh equilibrium for the above game with path strategies (open-loop) can be
described with the help of the Hamiltonian of player i: '
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Hitx(),u(6), 7)) =
R ()
F(t.x(0)u(t)) + E]: J-fj(s,x(t),u(t),t))\ij(s)ds
=

t

where A; is the evaluation of state variables x; by player i. We can now formally prove
the following theorem (the proof is along the lines of the variational approach employed

by Smith (1974, pp. 288-293)).

Theorem 1: If there exists a solution to the integral game stated above, and F; and f; are
continuous, with continuous partial derivatives and fj(t, x,1,8) = 0fort < s, then tixere
exist continzous multiplier functions A; and Hamiltonians H; defined by (7) that satisfy
the following conditions:

8H [du; = 0 = OF, [ou;
a T (8a)

> fa]g (s,x(8),u(2),8) /8w, 2 (s)ds, lsigsn
i=1 %
BHi/ij = )‘ij = BFi/axj
n (8b)
+ & -[ [Bfk(sxx(t)su(t)!t)/axj]lik(s)dsw 1= l:] £ A

Note that we do not need the transversality condition in order to prove the above
conditions. H

Proof: Let u(t) be a fixed continuous control control function. Then the solution to (6),
assumed 1o exist, can be written as: '

9

x = x(t,u)

where X = (Xppx,) and u = (u,,..,u,), and substituted into (6) to yield a functional in
u,
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T
J(w) = f Ftx(t,u),u)de . (10
0

Let va_riation in I_Je denoted by eAu; where ¢ is an arbitrary small number and Aut) is
a continuous function in t. Let Au = (0,...,0,Au;, 0,..,0) and therefore: '

u o+ €hu o= (g ()t (), (0 + ehu (1) u, (), u, (£)) .

Siqce u(t) constitutes the control function of a Nash equilibrium, the variation of T
written ,

OF(u,bu) = (d/de)I(u + €hu)|,, = 0 ' (11)

vanishes when € = 0 (see Smith, 1974). Let F, be the vector whose j"™ component is
9F;/3x, Computation of the variation of (10) and combination with (11) yields:

T
f[Fix(t,x(f,u) 8/dex(t,u + chu)l, .,
| (12)

+ OF f3u (t,x(t,u),u)du]dt = 0.

Now from (6):

t

8fdex(tu+edu)|, ., = 3/6€fﬁ(r,x(s,u+eAu),u + €hu,s)ds|, .,
]

t

J' 3/ def (6, x(s, u+edu)u+rebu,s)|, qds
0 (13)

n t

kz-j [ 18, /02, (t.x(s ) u,5) B/aex, (s, vebuy)] o

19

1|

+ 3f] [8u, (t,x(s,u)us) du,lds .
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Let A(t, s} be the matrix whose (j, k) element is o/ 0%,
Let B(t, s) be the vector whose ™ element is af,/du;. (14)
Let y(t) be the vector whose j* element is: 8/de x(t, u + €hu) [ c. o

[n a matrix form the system of equations (13) for j = 1,..,n can be written as the
following linear integral equation:

y(6) = [ASY () Blts)bu (9)]ds (15)
[}

According to a basic property of linear integral equations (see Miller 1971, pp. 189-93),
the solution to (15) can be written as:

y(£) = fr(t,s)[}B(s,r)Au(r)dr]ds + jB(t,s)Aui(s)ds (16)
[ 0

1}

where the matrix function r(t, s), called the resolvent kernel, satisfies

r(t,s) = A(t,s) + fr(:,z)A(z,s)dr. (17

3

g

Now, on a triangular region 0 < 7 < t < T, and function g

T T
g(t,v)dvdt = J Ig(r,t)drdt (18)
0t

S
o

so (16) can be rewritten as
i

y(t) = J [B(t,s) + Ir(t,r)B(t,s)dr]Aug(s)ds. (19)
0

8

Recalling (14) and substituting from (19) into (12) yields:
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T t t
l{ng(t’X(t’u)’u(t))[l [B(tx) + Jsr(r,r)B(r,s)dr]Auj(s)dS] )

+ @F [Bu, (¢, x(t,u),u(t))hut)rdt = 0.

Application of (18) to (20) yields

g

T
F- +
l ([ Folsx (s,),u(5)) [B(s.2) j r(s,0)B(x,0)dv]ds on

+ 8F, /8u (¢, x(t,u),u(t))yhu, (t)ds = 0.

—

Since (21) must hold for all continuous functions Au(t), 1t must obtain in the particular
case when Auy(t) equals the curly bracketed expression in (21). This implies

T
f{
0

+ AF, fou, (tx(tu)(t))2de = 0.

s

Fi(s.x (s u(s)) [Bls.t) = [ r(s,0B(.0)de1ds o)

—

from which it follows that

5

T
[ Fils.x(sm),u()) B(s,6) + [ r(s, 0B, )dvlds

t 23)
+ OF, [8u (¢t x(t,u),u(e)) = 0.

Another application of (18}, this time to (23), yields a Buler equation
T T
f [F (s,x(s,u)u(s)) + JF.lx(r,x(r,u),u(r))r(t,s)dt]B(s,t)ds 24)
t s

+ 8F, fou (1, x(t,u),u(f)) = 0.

If we can define A(s) by
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0 (25)
A(s) = F(sx(s,m)u(s)) + JFix(r,x(t,u),u(r))r(r,s)dr
3
and substitute from (25) into (24) we get
h (26)
aF, Jau, (£,x(t,u),u(t)) + fA(s)B(s,t)ds =0.
t
Substitution from (14) and recollection of (8) discloses that
OF, [du (t,x(t,u),ult))
27)

W T
+ Yy fafj/aui(s,x,u,t))\ij(s)ds =0 = aH,/ou,
i=1 3

verifying equation (8a). - ‘ .
Y %o gstab!ish equation (8b) it has to be shown that the A(t) defined in (25) is

consistent with its definition given in equation (8b). Substituting (14) into (8b) yields:

T
Ae) = L (tx(t0),u()) + jA(s,:)x(s)ds, (28)

-

i i ion i i duces to demonstrating
a linear integral equation in A. Consistency of (25)' and (28) re
that the forngxer is a solution t the latter. To do this we substitute from (25) to (28) to

get

T
Me) = [AG) P (s,x(s.0),(5)) .

T
+ JFix(r,x(r,u),u(r)r(r,s)dr]ds + F, (x(tx(t,u),u(t)) .

Application of (18) to the double integral yields
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T s
A1) = f [Als,5) + jA(T,r)r(s,r)dr]Frx(s,x{s,u),u(s))ds +

(30)
+ F (tx(t,u),u{r)) .
Substitution for the bracketed term in (30) from (17) yields
T
Me) = F, (t,x(ru),u(t)) + jFix(s,x(s,u),u(s))r(s,f)ds (B

which is exactly (25), with s replaced by ¢, and 7 by s.

5. DISCUSSION AND CONCLUDING COMMENTS

Consider a duopolistic industry in which the production cost of each firm depends
on the experience it already gained. The standard procedures to model experience (see
Spence (1981), and Stokey (1986)) is to define the accumulated output of each firm and
10 use it as a proxy for experience® Under such an assumption, if we let gi{r) be the
output of firm i at time 7, and define Q(t) = Q(0) + f§ q(r)dr and then assume that
production cost is given by C(q, Q) then the experience effect simply implies that as Q
rises, product cost declines. Clearly in this case the above integral equation can be
restated such that dQ/dt = g and if there is depreciation we can assume that
dQ/dt = q - 6Q. Note that the experience in this case can be described as some form
of a capital acquired by the firm.

The above formulation implies that it is possible to gain experience in one day
provided that the firm produces enough in such a day.

Let us now define the state variable experience E(1) as

1

E(t) = fa(q(s))e'“‘)(‘-s)ds
0

where a{q(s)} is an increasing and concave fanction. The above integral equation is not
trivial. We also assume that (s) is an increasing function and thus the experience gained
in the early stages depreciates faster than the experience gained in the later stages.

In discussing entry deterrence, the emphasis is on the asymumetry between the
incumbert firm and the potential entrant. One such asymmetry is that the incumbent
invested already in capital, capacity, technology or experiencé. Clearly from such an
analysis it shows that such investments are important in eveking an entry barrier.
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Discussing the interaction as integral games sheds some light on an important aspect of
such interactions. When an incumbent invests in some capital and the entrant enters at
a later period, the post-entry game is such that the players do not have the same type of
capital. One has an old fast depreciating capital, while the entrant has a new modern
one.
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NOTES

In the same manner one can define difference games when the time setting is

discrete. For a discussion on differential and difference ga B
Olsder (1982). games see Basar and

We defir}e .U" as time autonomous. This assumption can be generalized such that
the admissible controls at time t are history dependent.

If there are externalities in Jearning, then the experience of each firm depends on
the vector of accumulated output.
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