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Web Appendix A: On agent-based modeling, verification, and validation 

Agent-Based Models (ABMs) are especially suitable for cases in which a larger number of 

agents interact in a way that while simple to model on the individual level, are too complex to 

track using simple aggregate approaches (See Rust and Rand 2011 for a recent comprehensive 

review). Hence they fit well contagion processes among customers. Essentially, researchers build 

an individual- or network-level model of behavior, and use a simulation to examine how 

individual-level behavior aggregates to market-level aggregate consequences. Next we describe 

the basic features of our agent-based model, and how it corresponds to guidelines suggested 

recently by Rand and Rust (2011). 

Basic features of the model 

Basically one can conceptualize an agent-based model as a collection of connected cells, each 

representing a customer. In the agent-based environment, time is discrete and at each point in 

time, a cell can be in a finite number of possible states. A cell can change its state each period as 

a function of the state of the cells to which it is connected. In cellular automata application of 

ABM, the social system is a matrix with each cell connected to the cells immediately in its 

vicinity (i.e., typically the 8 cells that surround it). However, as we do here, to make the 

processes more realistic, researchers increasingly use more realistic structures of social systems 

as the base for the connectivity among individuals. The algorithm by which cells change their 

state is usually called “local rule” or “transition rule”. The collection of all states at a given point 

in time is called the “global state”. In each period, application of the local rule to a cell changes 

the global state of the grid. In the simple version, local rules are deterministic: A global state 

determines exactly the next global state. However, one can also use a stochastic model (as we do 

here), in which the state of the cells changes based on some probability function, which is a 

function of the state of the surrounding cells. 

Consider the diffusion of innovations we discuss here. Two basic approaches have dominated the 

decision of how to model the transition from non-adopter to adopter. Since Granovetter’s (1978) 
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seminal work, in disciplines such as sociology and communication, threshold models have been 

largely used to model a variety of phenomena, including the basic diffusion process. In these 

cases, the assumption is that an individual adopts an innovation only when a certain number of 

others, sufficient in number so as to surpass her threshold, have already done so. In contrast, 

cascade models, or competing-risk models such as the one used here (Leskovec, Adamic, and 

Huberman, 2007) take a stochastic approach that follows the basic diffusion-of-innovations Bass 

model and its extensions. Under this approach, in each period, a customer has a certain 

probability of adopting based on communications with her previously adopting peers or in 

response to marketing efforts. Here, we use a cascade approach as it offers a number of 

advantages: First, it incorporates external effects such as advertising that are not traditionally part 

of the threshold adoption approach. Second, it allows a more realistic stochastic approach, while 

the adoption threshold is deterministic. Third, it follows a well-established research tradition in 

marketing, which also allows us to build on past research when setting up and calibrating model 

parameters. 

Our model is thus similar in essence to previous cascade-based agent-based models of the 

diffusion of innovations published recently in the marketing literature (Goldenberg et al. 2007; 

Goldenberg, Libai, and Muller 2010), with a notable difference: It is a competitive, brand-level 

model, and not a category-level model. Each potential adopter can be influenced to adopt either 

Brand A or Brand B, which depends on the number of adopters of each in her social network. In 

the body of the paper, the local rules are described in detail. Next we give an overview of 

dynamics of the basic process, where Brand A has a program and Brand B does not (without 

extensions such as customer defection of shorter time horizons). The process is independently 

run on each of the 12 network structures described in the article. While connectivity is assumed 

bi-directional, the level of influence is not necessarily symmetric. 

Period 0: This is the initial condition; generally, consumers have not yet adopted any of the 

products (that is, activity of all network members is 0). Only the seeded group of customers with 

Brand A receives the value of A. 

Period 1: The probabilities for each consumer prob(t) are realized. For Brand A, an individual 

member can obtain the activation value of A through the combination of external influence and 

internal influence from the seeded people, if s/he is connected to any of them. For Brand B only, 
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external influence is still in place. A random number U is drawn from a uniform distribution in 

the range [0,1]. If U< prob(t) (based on the algorithm described in the paper), then the consumer 

moves from non-adopter to adopter (receiving the value of A for Brand A, or B for Brand B). 

Otherwise the consumer remains a non-adopter. 

Period n: The process continues as gradually more non-adopters obtain the value of either A or 

B, which changes the probability for the remaining non-adopters in the next period. 

Period 30: The process ends. By that time, on average, more than 90% have become adopters of 

one of the brands. The program calculates the customer equity, i.e., the net present value of each 

brand, given the number of adopters and when each one adopted. 

Guidelines for rigorous agent-based models 

In a recent article, Rand and Rust (2011) proposed structured guidelines for rigorous agent-based 

modeling focusing on models especially relevant for marketers, such as those dealing with the 

diffusion of innovations. Specifically they emphasized two factors that should be considered: 

verification and validation. We next briefly describe how the approach presented here is 

consistent with their guidelines on these two matters. 

Verification 

As Rand and Rust (2011) note, verification deals with the match of the implemented model to 

the conceptual model. They suggest three verification steps: documentation, programmatic 

testing, and test cases. We followed these stages as described below: 

Documentation: For each new module we add to the simulation, we start with a detailed written 

description of the theoretical conceptual model. Based on it, we generate a specifications 

document for programming. While programming, we closely follow the specifications document 

to verify that all functionality is covered, and there is no redundant functionality. We have a 

detailed work log in which we update what we are working on, and what functionality it serves. 

The code is documented so that even untrained assistants can easily find their way in it. The 

logical flow of each procedure and method is described, and classes are documented and 

explained. 

Programming testing: Done through a series of sanity checks, the Visual Studio debugger, test 
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prints, and scripts as follows: 

Unit testing: Each method has a test method or test script associated with it, which provides a 

given input, and has a known given output. This output is printed to a file or to the standard 

output. Since many of our methods involve the Network class, which is complicated by 

nature, we conduct some of the tests on a simplified, toy network of 10 members, with 

homogenous ties and influence parameters, and a given, predefined realization matrix. 

Code walkthroughs: Are done through scripts, each focusing on a part of the process (e.g., 

network building, activation, attrition, NP calculation), and the appropriate logical flow is run 

using all the relevant classes and methods. 

Debugging walkthroughs – Are done using the same scripts, using the Visual Studio 

debugger. Note, that in projects where the researchers are not the programmers, code and 

debugging walkthroughs are very different in nature. In our case, they tend to overlap, since 

we are the ones who write the code. 

Formal testing – Is done on the toy network using Excel and pen and paper. 

Test cases: We invest a lot in building and running test cases, whenever a change is applied to 

the code, or a new module is added. Corner cases are used as sanity checks for extreme values 

(no connectivity, full connectivity, realization is all 0, realization is all 1, full attrition, zero 

attrition, etc.) Sample cases are used to test that we obtain a reasonable range of outputs for our 

parameters. Our standard sample case is the Keller-Fay network, 30 periods, and 0.1 discount 

rate, no attrition, and brands are similar in p and q. We already know what values to expect from 

this network, and use it as a basis for many of our tests. We also have a set of specific scenarios 

(uniform degree of 6, zero discount, zero periods, etc.), and sets of relative value testing that we 

used for network size, number of periods, attrition, and time horizon. For example, when adding 

the attrition functionality to the code, we ran test scenarios with differing attrition rates to verify 

that higher attrition indeed results in fewer customers). 

Validation 

In terms of micro validation, similar to the example central in Rand and Rust’s (2011) paper, our 

model is a contagion model that follows the diffusion-of-innovation paradigm, which has been 

validated by numerous studies over the years. This relates to the parameters of word of mouth 
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and mass media, as well as to the fact that agents possess a local social network that does not 

allow them to discover information about the entire population. In addition, the seeding process 

is consistent with practice both in its nature (getting the product to consumers randomly or to 

opinion leaders with launch) and its extent, as a percentage of the population. At the macro level, 

the aggregated patterns of diffusion created by our model appear to suggest typical innovation 

adoption patterns of a sigmoid curve in which at first a few adopt, and then more and more until 

the entire population has adopted. 

At the empirical input level, the range of parameters for p and q is consistent with previous 

cascade modeling research, which draws on the Bass model. While the value of the mass media 

parameter is in the range of the aggregate Bass model, there is a need to adapt the q parameter to 

the size of the network. This adaptation has been done in the past (e.g., Goldenberg, Libai, and 

Muller 2002) where the parameters are set to achieve curves similar in magnitude to the 

empirical observations of the Bass model research. Recent research has indeed pointed to the 

close relationship between the individual-level cascade models and the aggregate, empirically 

supported, Bass model diffusion approaches (Gibori and Fibich 2010). 

In addition, we used a variety of real-world networks as the base for the social system structure 

in which the contagion process occurs. This social network structure is more realistic than 

models in which every consumer knows every other consumer. Because we examine a range of 

social network structures, we are able to cover differing social system scenarios. 

In terms of empirical output, thus far there have been no published empirical studies that enable 

differentiation between acceleration and expansion in word-of-mouth programs. Thus, our ability 

to compare our results to previous findings is limited. However a number of stylized facts 

indicate consistency between outcomes of our model and industry practice. Our results support 

the emphasis placed by many programs on market expansion, and are consistent with the 

common practice of focusing on opinion leaders, which is common in word-of-mouth marketing. 

It can also be shown using our framework that in terms of seeding, going much above the widely 

used industry benchmark of 1% results in decreased profitability. 
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Web Appendix B: Detailed network descriptions 

We use three types of data sources for the network structure, as follows: 

The published social network to which we had access has been used in recent years for various 

studies of social networks. E-mail Network URV is the e-mail network that manages 

communications between faculty and graduate students at Spain’s Universitat Rovira i Virgili 

(URV). URV eliminates bulk e-mails and considers a connection between A and B only if A sent 

mail and B replied (Guimera et al. 2003). PGP is the giant component of the network of users of 

the Pretty-Good-Privacy algorithm for secure information interchange (Boguña, Pastor-Satorras, 

and Diaz-Guilera 2004). Cameroon Tontines comm3 is a social network of women in Cameroon 

who were asked about their social communications as a part of a study on the use of 

contraceptives (Valente et al. 2007). 

A second type of network is one for which we collected data for this study. Recently there is 

growing interest in the academic literature in online communities and their effects on customer 

loyalty, new product growth, and profitability in general. Here we had the cooperation of 

Lithium Technologies, a leading online community platform provider that manages online 

communities for various US brands. Customers who join the community exchange information 

on a host of issues including support, ideas for new products, and discussions about the brand / 

product. For our purposes, each discussion between individuals on a specific matter constitutes a 

“link”. Assuming that the structure of social networks evolving may differ among subjects, we 

requested network information for various categories. We received data on information exchange 

in six such networks in areas including technological products, entertainment products, consumer 

products, retailing, and services (categories set by Lithium). The social networks presented here 

are those whose members surpassed a minimum level of involvement with the community, as 

defined by Lithium. 

Another social network we used is YouTube, which enables those who upload a video to be part 

of a social network connecting with other members. The network presented was created using a 

“snowball technique”: We first collected data on the users who uploaded the 25 most viewed 

videos in June 2009. We expanded our sample network by adding each YouTube user who was 

linked in a “friendship” connection to a member of the network, and had at least two additional 



 

 

8

“friendship” connections with other users within the general YouTube social network. The final 

data set contained over 4,000 users. 

The third type of network is the empirical degree distribution, where “degree” is the number of 

others connected to a given member of the work. Here we do not have the full network 

connections, but constructed a randomly assigned social network based on a reported degree 

distribution. The first one is a distribution based on TalkTrack by the Keller-Fay group, an 

award-winning, ongoing survey of American consumers ages 13-69, who report on WOM 

activity as well as social network size. The averages reported here are based on interviews with 

over 50,000 TalkTrackers who report size of close personal networks. A second empirical degree 

distribution is based on the reported averages of over 11,000 customers who visited the CNET 

site (Smith et al. 2007). Here the degree distribution is based on self-reporting on the number of 

others with whom respondents communicate at least once a month both online and offline. 



 

 

9

Web Appendix C: Additional tables 

 

Table C1. Parameter ranges 

Parameter Range 
 – external influence  0.001, 0.005, 0.01, 0.015, 0.02 

 
q – normally distributed internal influence  Cameroon: Means of 0.16, 0.2, 0.24, 0.28, 0.32 

(standard deviation = 0.08) 
CNET: Means of 0.005, 0.01, 0.02, 0.03, 0.04 
(standard deviation = 0.0025) 
The rest: Means of 0.04, 0.08, 0.1, 0.12, 0.16 
(standard deviation = 0.02) 

Seeding program size - proportion of market 0.5%, 1%, 2%, 3%, 4%, 5% 
 

Seeding program type Random, Influential–hubs, Influential–experts 
 

 

Table C2. Overestimation bias due to short time horizon 
No. Network Social value 

measured after 
5 periods 

Long-term social 
value 

Overestimation bias 

1 URV e-mail network 138% 78% 34% 

2 PGP 96% 58% 23% 

3 Cameroon Tontines 163% 88% 40% 

4 Retailer 129% 90% 21% 

5 Services 125% 98% 14% 

6 High-tech 1 123% 85% 20% 

7 High-tech 2 120% 76% 25% 

8 Entertainment 1 130% 76% 31% 

9 Entertainment 2 124% 83% 22% 

10 YouTube 140% 80% 33% 

11 Keller-Fay 120% 65% 34% 

12 CNET 136% 74% 36% 

  Average 129% 81% 28% 
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Web Appendix D: Pseudo code of the agent-based model 

The simulation is an object-oriented structure comprised of over 5,000 code lines, programmed 
using C++. We describe below the main classes, data structures, and procedures. 

 

Hierarchy 

The main object of interest is Network, comprised of members and connectivity. Each member 

has a set of data associated with it (see below in the class description), plus, its systems of ties. 

Note that connectivity is not the overall structure of a tie; rather it is the set of methods used for 

tie generation, as well as statistics encapsulated from the member. 

The hierarchy is described in the figure below. Note that the chart does not imply direct 

inheritance, but rather describes the general hierarchical structure. 

 

 

 

Main classes:  

CLASS Tie 

ATTRIBUTES: 

of_whom //the focal member's id 

with_whom //the id of the member to which it is connected 

influence_fromA //the influence from the focal member on the other     

 member if the focal member adopted A 

influence_onA //the influence on the focal member from the       

 other member if the other member adopted A 

influence_fromB //the influence from the focal member on the other     

    member if the focal member adopted B 

influence_onB //the influence on the focal member from the       

 other member if the other member adopted B 
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METHODS: 

SetTie(id1, id2, inf_fromA, inf_onA, inf_fromB, inf_onB) 

 

 

 

CLASS Member // A member in a network 

ATTRIBUTES: 

Id   // the serial number of the member 

state  //did not adopt (0), adopted brand A (1) or brand B(2) 

defect; //Did the member defect? Can only go with a zero   
   activation state 
Influential //1 influential, 0 a regular member 

its_pA  //The amount of influence of brand A 

its_pB  //The amount of influence of brand B 

its_numties //The number of WOM ties (degree) 

its_ties  // a linked list of ties 

 

METHODS: 

Activate(curr_status) //Update the results of the activation algorithm 

SetDefect(defect) //Decide whether the unit will defect this period 

IsConnected(member) RETURN BOOL //is the focal member connected        

      to the given member? 
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CLASS Network // A network is a collection of members 

ATTRIBUTES: 

its_members: MEMBER // Members in the network 

connectivitymatx 

ties_matxA //connection strength if member adopted A 

ties_matxB //connection strength if member adopted B 

 

METHODS: 

IsConnected(memberid1,memberid2) RETURN BOOL //Is a pair                

       of members connected? 

SetTieStrength(qvalA[Networksize],qvalB[Networksize]) 

UpdateMembersties() 

ActivateMember(new_state,isCompetition) //This is the algorithmic core 

        (Section 4.2).  

build_connections(numties[Networksize],connectivity[Networksize]) 

Activate(realization[Networksize],isCompetition) //Realization plus an 

 indication whether this is a monopoly or competitive scenario 

GetTotalActivity(activityA,activityB) 

ResetActivation() //Keeping everything as was, only reset activation  

   for rerun.  

SetActivation(initial_act[Networksize]) //Set activation to certain  

   values. It is used for setting initial activation. 

PrintConnectivity() 

PrintConnectivityToFile(Outfile) //Print connectivity to network 

PrintActivity() 

PrintActivityToFile(Outfile) //Print activity to file 

SetInfluentials(influentials_array[Networksize]) //decide who are the  

         influentials  

GetActivity(ActivityMatx[Networksize]) 

CalcAveDeg() RETURN FLOAT 

CalcAveDegTop10per() RETURN FLOAT 

CalcClustering() RETURN FLOAT 
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CLASS Connectivity //Set of procedures which set the network's 

connectivity  

      

METHODS: 

CreateMatrix(connectivity,tiesarray[],ties_matrix[],sizeofnetwork, 

probsarray[6]) //connectivity parameter can get two possible values: 

  External - Read an external connectivity, OR 

  Generate_dist – Generate a random graph from a given 

distribution. 

 Switch(connectivity) 

  Case generate_distribution:  

   CALL RandomTies 

  Case external: 

   CALL ExternalTies  

 End  

End 

 

 

RandomTies(numtiesarray[],ties_matrix[],sizeofnetwork) 

//Creates a random matrix according to a given distribution 

 CALL GenerateRandomTies 

 CALL SetConnectivityRandom 

End 

 

 

GenerateRandomTies(tiesarray[],sizeofnetwork) 

//Assigns number of ties for each member according to the Keller 

empirical distribution 

 Read the distribution parameters from a file 

 FOR i ← 0 to sizeofnetwork DO 

  Draw a random number 

  Find out between which values te number is 

  Return the relevant number of ties 

 END 

END 
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SetConnectivityRandom(minmember,maxmember,numtiesarray[],ties_matrix[]

,sizeofnetwork) 

//Sets random connectivity between the members in the range 

minmember:maxmember given the number of ties for each member as 

input (numtiesarray) 

 FOR each member in the range DO 

  WHILE there are still ties to allocate DO 

   IF all other members are set THEN  

    Allocation is terminated 

   ELSE 

//Since we allocate in order, all the previous 

members are set 

WHILE (i+1 < maxmember) DO 

 Randomly select a member to link to 

IF selected member is free for allocation 

and is not already linked to focal member 

THEN 

  BREAK  

END  

  END 

 END 

END 

 

   

 

ExternalTies(tiesarray[],ties_matrix[],sizeofnetwork) 

//Reads the connectivity from an external file, generates the 

ties array and the matrix 

 Reads the connectivity from an external file 

 WHILE (!eof()) DO 

  IF members are not already connected THEN 

   Connect the members 

   Increase the number of allocated ties 

  END 

 END 

END
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Main procedures: 

void GenericExperiment(connectivity, float probsarray[6], float 

Netparams[4]) //A generic experiment which compares:  

A case with no competition (pB=0 and qB=0) 

WOM program with random seed of adopters (only A or both A 
and B) 
WOM program with influential hub seed of adopters (only A 
or both A and B) 
WOM program with influential expert seed of adopters (only 
A or both A and B) 
 
 

Define Connectivity object 

CALL CreateMatrix 

Sort the ties array and find the ones with the highest 

number of connections - they will be the hubs 

 

Define Network object and create the network according to 

the connectivity 

 

READ all parameters from a file 

Assign the parameter q and mark the units with the highest 

q as experts 

 

WHILE (!eof()) DO 

Run the network X times with different realizations 

but same connectivity 

  Run no WOM program network 

CALL runsingleNetwork with suitable 

parameters 

 

Run a network where only A has a WOM program with 

random seed of adopters 

CALL runsingleNetwork with suitable 

parameters 

 

Run a network where only A has a hub 



 

 

16

influential program  

CALL runsingleNetwork with suitable 

parameters 

 

Run a network where only A has an expert 

influential program  

CALL runsingleNetwork with suitable 

parameters 

 

  END 

 END 

END 

void runsingleNetwork(Network *network, float discount, float 

*npvA, float *npvB,int *finalA, int *finalB, 

int seed[Networksize], bool av_slots[Networksize], 

int seedsizeA, int seedsizeB, int t_entryB, 

int TimeMatx[Networksize][2]) 

//Run a single Network for a given number of periods. 
The function gets as input whether A or B have a program, 
and the entry time of B. 
The assumption is that A enters at time zero, and a brand 
can start a program only when it enters 

 

Determine the initial activation state based on the seed, 

entry times etc. 

 

Activate the network given the initialization vector and 

according to the entry time of the follower 

Calculate adoption time of each member 

Calculate NPV for A and for B 

END 

 

 

MAIN: 

CALL GenericExperiment 
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Web Appendix E: Correlation matrix and results tables 

 

Table E1. Correlation matrix  

Variable  network 
size 

average 
degree 

clustering 
coefficient 

discount 
rate 

periods brand 
strength 

seed size attrition 
rate 

network size 
 

1        

average degree 
 

-0.304 1       

clustering  
coefficient 
 

0.371 -0.093 1      

discount rate 
 

0.005 -0.003 -0.001 1     

number of  
periods 
 

0.000 -0.001 0.000 -0.001 1    

brand strength 
 

0.011 -0.011 -0.006 -0.008 -0.001 1   

seed size 
 

-0.031 -0.002 -0.014 0.003 0.000 0.006 1  

attrition rate 
 

-0.016 0.010 0.006 0.009 0.001 0.027 -0.011 1

 

Table E2. Regression results: Influential–experts program 

Independent variable 
 

Coefficients Standard Error 

Network size 
 -2.2E-05 6.15E-07 
Average degree 
 -0.00497 0.000155 
Clustering coefficient 
 -0.69843 0.011948 
Discount rate 
 0.013679 0.003185 
Number of periods 
 -0.09692 0.003185 
Seeding size 
 -3.97168 0.09235 
Attrition rate -0.1493 0.003202 
Relative strength of focal brand 0.261454 0.003185 
Adjusted R-Square 
 

70.8%  

Dependent variable is acceleration ratio. All coefficients are significant at the 1% level. 
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Table E3. Regression results: Random program 

Independent variable 
 

Coefficients Standard Error 

Network size 
 -2.2E-05 7.29E-07 
Average degree 
 -0.00458 0.00018 
Clustering coefficient 
 -0.77353 0.013928 
Discount rate 
 0.007571 0.003722 
Number of periods  
 -0.10938 0.003721 
Seeding size 
 -4.42184 0.108003 
Attrition rate 
 -0.16614 0.003766 
Relative strength of focal brand 
 0.28867 0.003729 
Adjusted R-Square 
 

67.5%  

Dependent variable is acceleration ratio. All coefficients are significant at the 1% level. 

 


