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One of the main problems associated with early-period assessment of new product success is the lack of
sufficient sales data to enable reliable predictions. We show that managers can use spatial dimension of

sales data to obtain a predictive assessment of the success of a new product shortly after launch time.
Based on diffusion theory, we expect that for many innovative products, word of mouth and imitation play

a significant role in the success of an innovation. Because word-of-mouth spread is often associated with some
level of geographical proximity between the parties involved, one can expect “clusters” of adopters to begin to
form. Alternatively, if the market reaction is widespread reluctance to adopt the new product, then the word-
of-mouth effect is expected to be significantly smaller, leading to a more uniform pattern of sales (assuming
that there are no external reasons for clustering). Hence, the less uniform a product’s distribution, the higher
its likelihood of generating a “contagion process” and therefore of being a success. This is also true if the
underlying baseline distribution is nonuniform, as long as it is an empirical distribution known to the firm.
We use a spatial divergence approach based on cross-entropy divergence measures to determine the “dis-

tance” between two distribution functions. Using both simulated and real-life data, we find that this approach
has been capable of predicting success in the beginning of the adoption process, correctly predicting 14 of 16
actual product introductions in two product categories. We also discuss the limitations of our approach, among
them the possible confusion between natural formation of geodemographic clusters and word-of-mouth-based
clusters.
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1. Introduction
A marketing manager faces the following problem:
S/he has three months’ worth of biweekly sales data
on two new products sold in the same geographical
areas, targeted at roughly the same segments, using
the same distribution channels. Although both time
series look similar, the manager feels that one of the
two products is not as successful as the other and
would like to back up this hunch with quantitative
data, as decisions must be made regarding advertis-
ing, pricing, and promotion for the two products.
Such dilemmas are quite common, because al-

though much of the research on new product intro-
ductions has traditionally focused on improving the
initial go/no-go decision, one of the main problems
associated with early-period assessments is the lack of
data to enable further predictions. The few periods of
aggregate sales of monthly data available to marketers
render predictions relatively unreliable. For example,

it has been suggested that using diffusion models,
such as the well-known Bass model, a stable estimate
of the diffusion process parameters requires sales data
from introduction through peak of sales (Srinivasan
and Mason 1986). Therefore, it has been argued that
diffusion models cannot serve as an effective predic-
tive tool for the early years of a product’s life (Kohli
et al. 1999, Mahajan et al. 1990a). One promising way
to overcome this shortcoming and enable early fore-
casting is to use orders in the prelaunch stage (Moe
and Fader 2002). Another approach is to use mar-
ket tests such as IRI BehaviorScan tests when these
are available (Fader et al. 2003). Unfortunately, in
many cases such data are not readily available.
We propose a novel approach to overcome some of

the problems associated with early prediction of new
product success based on sales data. Instead of using
only time series of aggregate sales, we add its spatial
dimension, i.e., not only how much the product sold
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but also where. This approach uses more information
and requires fewer time-dependent data points to ren-
der better prediction. Using our approach, we have
been able to predict early on the success of new prod-
ucts in simulations describing the products’ growth
in space and time, as well as using real data on 16
innovative products.
Spatial data that are often available to marketers

have yet to receive the attention they deserve from
researchers seeking to predict new product success.
While the results in this paper look promising, one
should be aware of the limitations of this method.
For example, while the method naturally fits spatially
homogeneous segments better, it requires more work
to apply in cases where natural geodemographic seg-
ments exist. We discuss these limitations in the final
section of the paper.

2. Pairing Spatial and Temporal
Dimensions of Growth

When new products enter a market, they diffuse in
time and space. As compared with the wide interest
in marketing in the temporal diffusion of new prod-
ucts, scant attention has been paid to the spatial pat-
tern of growth and its relationship to the temporal.
Exceptions are Mahajan and Peterson (1979), Allaway
et al. (1991), Bronnenberg and Mahajan (2001), and
Song and Bell (2002). Recently, studies have been con-
ducted that examine global diffusion of technologies
focused on the proximity between countries and geo-
graphical regions to explain the temporal patterns of
growth (Tellis et al. 2003, Dekimpe et al. 2000, Putsis
et al. 1997).
The rationale for the formation of adopter clus-

ters is related to the role of word of mouth and
imitation in the diffusion of innovations. Following
the diffusion paradigm that views the communication
process as the main driver of new product growth,
one can see two types of communication effects: exter-
nal and internal (Mahajan et al. 1990a). While the
external effects represent the marketing efforts of the
firm, the internal effect represents the influence of
previous adopters and provides two concurrent pos-
itive reinforcements: positive word of mouth and
a source for imitation and legitimation. To a large
extent, internal effects constitute the market reaction
to the product. If the product is well received, then
word of mouth and imitation will carry forth the
message, followed by more and more adopters, fur-
ther feeding the flow of internal influence. Eventually,
having reached a sufficient level of internal effects,
the product will take off.
Internal effects have been found to be the under-

lying and driving force of innovation diffusion of
many new products, exerting an influence exceeding
that of external marketing efforts such as advertising

(Goldenberg et al. 2001, Rogers 1995, Mahajan et al.
1990b). However, for internal effects to take place
and personal recommendations to begin circulat-
ing, adopters typically must share some form of
physical proximity. Indeed, the diffusion literature
reports a clear correlation between geographic prox-
imity and the strength and speed of word-of-mouth
spread, sometimes labeled the “neighborhood effect”
(Baptista 2000, Case 1991, Mahajan and Peterson
1979). It is easy to see, even with a simple simula-
tion, that from a geographical point of view, word-of-
mouth effects drive a formation of spatial clusters.
However, if the product in question is a “dud,” then

one can expect the internal effects activity associated
with it to be minimal, with no contiguous units buy-
ing it. While some consumers will adopt it, mainly as a
result of external effects, the effect of their adoption on
other consumers will be negligible: Clusters will not
form, and spatial distribution will be mainly a result
of external effects; i.e., adopters will be randomly dis-
tributed in space in what can be expected to be a geo-
graphical distribution close to that of a uniform dis-
tribution. Thus, a lack of contiguous units adopting
the product may be a strong signal for the product’s
failure, assuming that clusters are not formed due to
reasons external to the contagion process.
Figure 1 illustrates our main argument. Figure 1a

presents a simulated adoption of a successful prod-
uct in six discrete time periods in an area with a
homogenous population. The adoption of this prod-
uct is clearly characterized by clusters. In comparison,
Figure 1b presents the adoption of a second product,
whose distribution of adopters in the same geograph-
ical area is relatively uniform.
Our claim is that even before period 10 it is possible

to predict the eventual success/failure of the products
by comparing their spatial distribution to the uniform
distribution, using an accurate measure of divergence.

3. Small-World and Cross-Entropy
3.1. The Complex Systems Approach
In the first study, we use a simulated environment to
evaluate the model. In order to create this environ-
ment, we utilize a complex system approach. In order
to calibrate and validate the proposed method, one
must create dyadic sets of data containing successes
and failures allowing for reasonable variance within
these sets. In a complex systems approach, a system
is analyzed through a simulated “would-be world”
that allows testing of a wide range of scenarios.
One well-known complex system method is cellular
automata, which has been recently introduced to the
marketing literature as described by Goldenberg et al.
(2001, 2002). New product growth cellular automata
depicts the market as a matrix, the elements of which
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Figure 1 Spatial Adoption of Two Products: (a) Successful Product (Clustered) and (b) Failed Product (Uniformly Distributed)
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represent adoption of individuals comprised of var-
ious discrete cells, where the location of each cell is
determined and taken into account in order to render
a spatially meaningful process. Each cell interacts with
its neighboring cells, with this interaction evolving in
time and possibly producing complex behaviors.
Cellular automata’s popularity stems from the fact

that despite its parsimony, it generates a wide range
of dynamics and growth patterns. However, tech-
niques that model the connection among agents that
are not necessarily neighbors can also be used to
examine the evolution of markets. Among them is
the Small-World network (see Watts and Strogatz 1998
and, for recent marketing implications, Balakrishnan
et al. 2002), a promising technique that has recently
drawn considerable attention. An advantage of the
Small-World system is that it enables us to describe
a social system with a flexible connective structure
between networks. According to the Small-World
approach, nodes are uniformly distributed on a circle
or in a matrix, each connected to its neighbors up to
some prespecified range. In addition, a limited num-
ber of nonneighboring nodes are allowed for interac-
tion through shortcuts, appearing as strings inside the
circle or random shortcuts throughout the matrix, as
seen in Figure 2, for a circle network1.

1 One of the more colorful examples of a Small-World setting is the
Erdős number project. Paul Erdős (1913–1996), a widely traveled
and prolific Hungarian mathematician, wrote hundreds of research
papers in collaboration with others. His Erdős number is 0. Erdős’
coauthors have Erdős number 1. Coauthors of individuals with
Erdős number 1 have Erdős number 2, and so on. For example,
one of the authors of this paper has an Erdős number 4, and thus
the Erdős number of the other three coauthors is at most 5. The
latter might be smaller if there exists a chain of links fewer than 5
connecting them to Erdős. An interesting point to observe—found
in the Erdős Number Project homepage—is that almost everyone
with a finite Erdős number has a number less than 8.

In a Small-World network, consumers can take on
two values: 0 for nonadopters and 1 for adopters. The
rules that define transitions of potential adopters from
state 0 to state 1 are classified into two types:
• External Factors: probability p exists, such that in

a certain time period, an individual will be affected
by external influence factors such as advertising, to
adopt the innovative product.
• Internal Factors: probability q exists, such that

during a single time period, an individual will be
affected by an interaction with a single other individ-
ual who has already adopted the product.
Note that these assumptions directly correspond to

those of the aggregate-level Bass model.
The time-dependent (noncumulative) individual

probability of adoption, prob�t�, given that the indi-
vidual has not yet adopted, is based on the following
binomial formula:

prob�t�= 1− �1− p��1− q�v�t�+r�t�� (1)

where v�t� is the number of previous adopters with
whom the individual maintains contact in the vicin-
ity of the cell under consideration and r�t� are
adopters out of his/her weak-ties contacts (outside
the vicinity). Thus Small-World introduces some ran-
dom communications between cells that are not in

Figure 2 Small-World Networks

Increasing randomness by adding shortcut links between remote nodes

Classic Small-World Random



Garber et al.: Spatial Dimension of Sales Data for Early Prediction of New Product Success
422 Marketing Science 23(3), pp. 419–428, © 2004 INFORMS

proximity to each other, thereby in turn introducing
more complexity into the network generated by cellu-
lar automata modeling. We will report the simulation
results using Small-World. However, the same analy-
ses reported below were also performed using cellular
automata, with similar results.

3.2. Spatial Divergence Measurements
We are interested in measuring the divergence
between the spatial distribution of the product in
question and uniform distribution. A rich literature
exists concerning divergence measures between two
distributions (Johnson and Sinanovic 2001, Lee 1999).
A widely used group of such measures is the Ali-
Silvey class, which measures the expectations of the
likelihood ratio of the two distributions. Consider two
probability functions f1 and f2. A (discrete) Ali-Silvey
divergence measure is represented by:

d�f1� f2�=
∑

x

f2�x�gf1�x�/f2�x��� (2)

where g is a convex function (see Csiszar 1991). Of
this class, the most commonly used divergence mea-
sure is the cross-entropy divergence (Kullback 1997) in
which the function g of Equation (2) is the following:
g�x�= x log x. Thus the cross-entropy divergence can
be represented by:

CE�f1 � f2�=
∑

x

f1�x� logf1�x�/f2�x��� (3)

As the logarithmic function in Equation (3) can
be represented as log�f1�− log�f2�, cross-entropy sums
up the distance between any two points in the two
distributions weighted by the probability that these
points could occur. To overcome the lack of symme-
try of the above measure, another measure in the
Ali-Silvey class can be formed (Lee 1999): The Jensen-
Shannon measure (JS) is obtained from Equation (3)
by the following: JS�f1� f2� = CE�f1 � �f1 + f2�/2� +
CE�f2 � �f1 + f2�/2�. In this paper we have performed
the calculations on our models using both measures
of cross-entropy and the Jensen-Shannon divergence.
We found virtually no difference between the predic-
tive abilities of the two measures, and thus we report
our results using cross-entropy only.
In order to operationalize the divergence mea-

sure, we divide the geographical area under con-
sideration into smaller subsets, called “windows.”
The density of adoptions for each window would
be the number of adopters in the window divided
by the total market potential. Two opposing consid-
erations should be taken into account when deter-
mining the window’s size. The first is the adequacy
of the representation of the distribution by the com-
plete set of windows. For this purpose, a high reso-
lution is needed and a smaller window is required.
Yet decreasing the window’s size causes the num-
ber of individuals inside the window to decrease

accordingly, causing a possible decrease in the accu-
racy of the estimation. However, in order to reduce
the noise of the estimated distribution curve, a larger
window is required. These two demands are contra-
dictory, and thus it is important to define an effi-
cient window size. One recommended approach is to
employ Parzen Windows of equal size—proportional to
the square root of the potential market—as the area
unit of analysis, a widely used technique considered
an efficient method for the construction of density
functions (Parzen 1962). In the appendix, we show
how forecasting accuracy increases when we move
from coarse partition to finer partitions.

4. Cross-Entropy as a Predictor of
Success

We ran 100 Small-World simulations of 2,500 poten-
tial adopters each, with varying p and q values
so as to cover various possible ranges of adoption
curves (from complete failures to a strong notice-
able takeoff). The parameters p and q were chosen to
comply with findings on values of aggregate diffu-
sion, transformed to an individual-level grid, where
p ranged from 0.0001 to 0.04, and q from 0.0001 to
0.03 (see Sultan et al. 1990 for aggregate diffusion
modeling results and standard diffusion parameters;
Goldenberg et al. 2001, 2002 for a discussion of the
transformation of parameters to individual-level com-
plex methods).
In order to use the Small-World model efficiently,

one must decide on the proportion of the distant links
from the entire set of links. We have chosen the clas-
sic level of 5% as an upper limit, because beyond
this level, the social system becomes similar to a ran-
dom network and less comparable to real-life social
systems (Amaral et al. 2000). One common approach
is to estimate the percentage of adopters associated
with a takeoff. Rogers (1995) suggests that takeoff typ-
ically occurs when about 16% of the market potential
adopts. Indeed, the 16% representing the cumulative
number of innovators and early adopters according to
Rogers’ adopter categories is sometimes an accepted
number with regard to the anticipated end of the
Introduction Stage (Moore and Pessemier 1993).
Thus, a growth process is deemed a success if 16% of

the market is obtained before a specified time T . Note
that the determination of the time T may differ for
various growth processes. However, for the durables
studied in the meta-analysis reported by Sultan et al.
(1990), takeoff was typically reported prior to ten peri-
ods. Thus we consider failure all cases in which one of
the following two events takes place2:

2 We also used experienced judges to visually determine the exis-
tence of takeoff within a certain time period, in the spirit of Golder
and Tellis (1997). The results in terms of correct prediction using
cross-entropy were similar and are available from the authors.
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Table 1 Logistic Regression Confusion Table

Predicted success (%) Predicted failure (%)

Observed success 93.1 6.9
Observed failure 14.3 85.7

Note. Average correct predictions= 90�0%.

(i) 16% of the population has not adopted within
ten periods �T = 10�
(ii) The peak in sales occurs prior to the time at

which 16% of the potential adopters have adopted the
product.
For each process, the cross-entropy was calculated,

and a logistic regression performed on the success
measure and the cross-entropy measure of diver-
gence. The logistic regression correctly classified 90%
of the cases, as shown in Table 1.
In addition, we performed a boot-strapped hold-

out prediction by dropping one product at a time and
predicting its success/failure based on the parame-
ters of the logistic regression. The results remained
precisely the same with average correct predictions
of 90.0%. In order to further test the stability of our
regression model, we performed a split-half analy-
sis (the holdout sample was 50% and selected ran-
domly). We used the logistic regression model with
its parameters to make predictions on the holdout
sample. Again, there was no change in the confusion
table, and prediction level remained exactly the same.
To better understand how the two processes of a

successful product and a failure differ in terms of
cross-entropy, consider Figure 3, which illustrates the
time-dependent cross-entropy calculation for the two
products represented in Figures 1a and 1b. The dif-
ference in cross-entropy is noticeable early in the
growth process. As the process continues, the differ-
ence between the cross-entropies decreases, and in
this example, diminishes as sales approach the peak
level for the two cases of success and failure.
The phenomenon depicted in Figure 3 may look

counterintuitive: Typically, one can expect that as

Figure 3 Cross-Entropy Measures of the Two Products
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more sales data are accumulated, better predictions
regarding a product’s success will be generated. Here,
however, better separation between successful and
nonsuccessful processes is observed at earlier stages.
The reason for this behavior lies in the intrinsic devel-
opment of clusters through word of mouth. In the
case of a successful product, initially small kernels
of adopters form, as can be observed in Figure 1.
The kernels grow to form clusters, and later on clus-
ters start to merge. At a certain point in time, it
becomes harder to distinguish between cluster-based
and noncluster-based growth processes, as the distri-
bution of buyers reverts to a spatially near-uniform
distribution. In fact, toward the end of the process,
clusters of nonadopters have formed (as opposed to
a uniform distribution of nonadopters in the failure
case), and the difference between the cross-entropies
of the two processes is once again distinguishable.

5. Field Tests
5.1. Supermarket Products
Obtaining the data needed to test the divergence
method in a real-life application is not simple. First,
one needs to obtain growth data of a product, as
opposed to only aggregate data, in a number of geo-
graphic locations. Second, for discriminating validity
purposes, one needs to obtain spatial sales data on fail-
ures, which are generally hard to obtain. We were able
to obtain data on the sales of eight new health and per-
sonal hygiene products sold in a dominant supermar-
ket chain in a Mediterranean country. The data include
monthly sales during the first year. While the general
product categories are relatively mature, as is the case
with most supermarket products, the products them-
selves were considered innovative relative to the cat-
egory. Each product was launched simultaneously in
each of the chain’s locations. The successful products
had a pattern of a rapid, monotonic increase in sales.
In contrast, the failed products did not sell well based
on the chain’s standards, and very moderate growth
was observed. At the time, these products were under
consideration for removal from the shelves and cessa-
tion of their distribution.
Because we were limited to data provided by the

supermarket chain, data could not be broken down
to optimal window (Parzen windows) size. Rather, it
was coded based on the retailer’s data into 12 regions.
Consequently, window size had to be constrained
by the weight and area of the retailer distribution
regions. Each window was weighted according to
the corresponding area’s relative population size. For
cross-entropy calculation purposes, each region was
designated as a window. Before comparing the proba-
bilities of success in a manner similar to the previous
study, we can examine the cross-entropy differences
between the successful and failed products to see if a
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difference is sufficiently great to discriminate between
the cases. What we find is a pattern—similar to that
in Figure 3—in which the successful products have
a declining cross-entropy measure, while the failures
have a consistently low cross-entropy measure. Figure 4
presents the cross-entropy measure each month for
one successful product and one failed product. Both
graphs use the same scale. The difference between
failure and success is indeed pronounced in the first
periods (about 50 times higher in the first period for
the successful product). As can be seen, the early-
period cross-entropy pattern of these cases is similar
to the cross-entropy pattern for the Small-World case
in Figure 3, obtaining its maximum level at the begin-
ning of the process.
This figure demonstrates how a clear difference in

divergence helps to differentiate between successes
and failures by qualitative visual assessment. Yet a
more rigorous approach should call for a quantita-
tive tool that would help to convert cross-entropy
results into probabilities of success in an unambigu-
ous manner. Thus we return to Small-World simu-
lation, this time as a tool to translate the empirical
results into success probabilities. We ran Small-World
and connected success or failure status (as the depen-

Figure 4 Cross-Entropy, Calculated Monthly for the Two Products
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dent variable) to cross-entropy divergence measure
(as an independent variable) through logistic regres-
sion. As will be explained next, using the resultant
logistic regression function, we can determine the
probability of success for each cross-entropy value,
including real-life cases.
We must, however, take into account that unlike

the simulations in which the area unit was based
on the Parzen windows, real-life data may present
itself as geographical areas with varying sizes, mar-
ket potentials, and concentrations of adopters. Hence,
the Small-World analysis should use spatial units cal-
ibrated to take into account actual size and potential.
Consequently, since the actual market was divided
into twelve geographical areas, the simulated space
was divided into twelve windows of relative sizes to
match the actual areas of distribution. We calculated
cross-entropy for each simulated process again, taking
into account the new window sizes. We performed
a logistic regression that uses the new results with
a dependent variable of success/failure to produce a
function that describes the success probability as a
function of the cross-entropy in the field case at hand.
Thus, when a marketing manager wishes to estimate
the probability for success for a specific case, s/he
should perform the following procedure:
(1) First, calculate the cross entropy of the spatial

distribution of the sales, based on the windows made
possible by the data available.
(2) Next one needs to form the function that will

translate the cross-entropy values into probabilities of
success. In order to do this one has to follow these
three steps:

(2a) Use the set of Small-World simulations with
the following modification. The windows used to
calculate cross-entropy are now changed from opti-
mal (Parzen) size to windows that match the win-
dow numbers and sizes in the real-life case of Stage 1.
The result is the same set of processes but with new
cross-entropy values.

(2b) Create a data set for the logistic regression:
Each point is actually one Small-World process, the
independent variable is the cross entropy measures
early in the process and the dependent variable indi-
cates whether the product is a success or failure.

(2c) Run the logistic regression to form the rela-
tionship between cross entropy values and probability
of success.
(3) Now, going back to the cross entropy of the

real-life case, and using the relationship determined
in Stage (2c), find the probability of success for this
specific case.
The calculation of the cross-entropy of the Small-

World simulation for the 12 regions of the super-
market chain again revealed a phase transition-like
phenomenon in which there was clear distinction
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between success and failure. Again, high values of
cross-entropy indicate a high probability of success,
and low values indicate a low probability of success.
The transition between these two regimes is abrupt,
with the threshold value that discriminates between
success and failure found to be around 0.3. The fact
that this measure is sufficiently robust, even when
the window sizes are far from optimal, suggests that
cluster formation may be an eminent factor of suc-
cess. The correct predictions of the logistic regres-
sion (based on the Small-World cases) are 80%. This
value is naturally not as high compared to the val-
ues achieved when using optimal window size in the
simulation study (see The Effect of Number of Windows
Reduction in the appendix). Table 2 presents the pre-
dictions of the logistic regression.
The first column of Table 2 represents the product,

while the second column indicates the field observa-
tions based on the growth of the product’s sales dur-
ing the nine-month period. The third column shows
cross-entropy value for the first month. It can be
seen that the cross-entropy of a successful product
is in order of magnitude larger than that of a fail-
ure. The last column shows the prediction of success
probability, calculated through the logistic regression.
Thus, for example, for product 1, a success, the cross-
entropy measure of 0.52 yields a 99.9% probability of
success in the logistic regression function.
Note that the fifth case (denoted with a double star)

is a successful product that was predicted to be a
failure. In a discussion with the executives of the dis-
tribution chain, the possibility was raised that the suc-
cess of the product was so phenomenal, that after one
month the diffusion covered too large an area, caus-
ing the cross-entropy to drop sooner than the other
products. If correct, this means that regarding a rapid
diffusion of a highly successful product, the cross-
entropy value must be measured earlier than the first
month.

Table 2 Supermarket Product Category: Cross-Entropy Calculations
for Successful and Failed Products

Cross-entropy Probability of
Product Outcome (first month) success∗ (%)

1 Success 0.52 99�9
2 Success 0.51 99�9
3 Success 0.31 99�8
4 Success 0.30 99�8
5 Success∗∗ 0.03 0�6
6 Failure 0.01 0�4
7 Failure 0.02 0�4
8 Failure 0.08 6�5

∗ Computed from the logistic regression whose independent variable is the
cross-entropy of the Small-World and whose dependent variable is success/
failure.

∗∗ Product 5 was predicted to be a failure, while its actual status is a
success.

5.2. Home Furniture Sets
In order to further demonstrate our approach, we
obtained further data on eight products in the home
furniture category. A large home furniture chain was
asked to select four successful new furniture sets and
four failures. The marketing manager defined a fail-
ure as a set whose sales have not reached a prede-
fined level and whose first stock was not sold out.
A successful product was defined as a set all of whose
entire first run units have been sold and more have
been ordered from the manufacturers. The chain sup-
plied data of monthly regional sales by individual
store. The regional data were rich, including dozens of
locales, in contrast to the 12 windows of the previous
study. The comparison between failures and successes
was obtained by computing the success probability
for each case in the same way as was performed in the
previous study, mutatis mutandis. We also corrected
the window size for local market size, as described in
the appendix. As in the previous studies, the cross-
entropy measures produced values that were found
to be largest in the first period and then declined
with time. Table 3 presents the computed prediction
of success probability. It can be seen that the cross-
entropy of a successful product is in order of mag-
nitude larger than that of a failure. Note that unlike
in Table 2, a monotonic relationship between cross-
entropy and probability of success is not found in
Table 3. The reason is that the analyzed areas for the
furniture sets were different for different sets, and
thus the windows used for the analysis were not
identical. Thus, for each product we used a different
logistic regression as explained earlier. Had the win-
dows been equal, a single logistic regression could
be used and a monotonic relationship between cross-
entropy and probability of success would have been
expected.

Table 3 Home Furniture Sets Product Category: Cross-Entropy
Calculations for Successful and Failed Products

Cross-entropy Probability of
Product Outcome (first month) success∗ (%)

1 Success 0.21 91
2 Success 0.27 96
3 Success 0.21 70
4 Success 0.26 98
5 Failure 0.12 0�1
6 Failure∗∗ 0.37 92
7 Failure 0.07 23
8 Failure 0.19 1

∗ Computed from the logistic regression whose independent variable is
the cross-entropy and whose dependent variable is the outcome (success/
failure).

∗∗ Product 6 was predicted to be a success, while its actual status is that
of a failure.
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6. Discussion and Limitations
This paper demonstrates the ability of the spatial
divergence approach to serve as an early-period pre-
diction tool, in both simulated and actual field stud-
ies. While the results look promising, as it successfully
predicted 14 of 16 cases, caution should be exercised
when applying this approach to a variety of mar-
ket conditions. A key concern is the homogeneity
assumption of the spatial distribution of consumers.
While this assumption might be reasonable in some
cases, there are cases where the baseline distribu-
tion might be nonuniform. Hence, when applying the
cross-entropy approach to new product prediction,
we recommend the following steps:
First, one should determine to what extent the

homogeneity assumption deviates from reality in the
case at hand. For example, in the supermarket case,
the executives who supplied us with the data saw no
reasons for clustering based on demographic or other
covariates for these specific products and regions.
One way to deal with the question of nonhomo-

geneity might be found in retrospective analysis
of past product introductions. If cross-entropy suc-
cessfully separates the winners and the losers, we
might have an indication that the approach is ade-
quate on an ad hoc basis. This means that with
the marketing and market conditions at hand, the
noise introduced because of nonhomogeneity does
not overpower word of mouth-based clustering (this
method might be sensitive to dynamic changes in
the population, and thus the tests should be per-
formed first on products that were launched in the
past few years). Furthermore, the cross-entropy value
of the current introduction could be compared to the
success and failure groups, i.e., if the current value
is significantly closer to the success’s past values of
cross-entropy, the product is more likely to be a suc-
cess, and vice versa.
If nonhomogeneity distorts the results, one can take

one of two courses of action. One possibility is to con-
duct the analysis in relatively homogeneous areas for
which geodemographic clustering is less of a problem.
For example, a certain city and its neighboring rural
areas may be analyzed separately. Since our main aim
is to predict success and not the spatial pattern that
follows it, focusing on a limited area may offer sig-
nals of success that are measurable, and match well
with the destiny of the new product. The second
course of action is not to compare the distribution
of actual penetration to the uniform distribution, but
rather to another baseline distribution, which repre-
sents marketing executives’ information on possible
clustering based on drivers that are external to the
communication process. There are mainly three such
variables: size, marketing plans, and innovativeness
distribution.

Size and Marketing Plans
In the furniture study presented above, we concen-
trated on size, correcting the window sizes by cal-
ibrating each point of sales by its window size. In
the appendix, we present an empirical test for which
the underlying distribution is known to be nonuni-
form due to variations in the number of users in each
region—the hybrid corn case. Similar weighting can
be done if the firm is aware of different levels of mar-
keting expenditures in various areas.

Innovativeness Distribution
The situation is more complicated if geodemographic
clustering may be expected, because propensity to
adopt differs in various areas. One possibility is to
develop a measure of innovativeness for each area,
based on surveys that examine the timing of adoption
of innovations in the past in various areas. If differing
levels of innovativeness are available for the various
areas, managers can use them to build a baseline dis-
tribution that is not uniform regarding the propensity
to adopt.
We wish to point out that the latter activity of

building baseline distributions might be a challenge
in many cases. The current literature on patterns of
spatial distribution of potential adopters should be
augmented with more findings before better general-
izations can be made in this regard. We hope that this
note will serve as a compelling enough motivation for
further research on this key issue.
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Appendix. The Spatial Approach with Nonuniform
Base Distribution: The Case of Hybrid
Corn

In order to examine the usefulness of the spatial diver-
gence approach even when the distribution of consumers is
not uniform, we present an empirical analysis of the well-
known case of hybrid corn, because the actual distribution
of the examined variable, namely the corn acreage planted,
is known. Due to the lack of reliable data prior to 1933,
cross-entropy was calculated for that year. As opposed to
the uniform case, in the hybrid corn case, each U.S. state
was considered a window with a unique size. In the first
stage, we calculated the acreage for each state, as well as
the proportional acreage percentage in each state compared
to the total U.S. acreage. We then calculated a probabil-
ity function representing the adoption of hybrid corn in
the U.S. from this data. Thus, when calculating the sum
of f1�x�

∗ log�f1�x�/f2�x�� for Illinois, f2�x� was equated to
0.0754, or the corn acreage in Illinois divided by the total
corn acreage in the U.S. (data on the penetration of hybrid
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corn and total corn acreage were obtained from USDA agri-
cultural statistics).
In order to use this measure to predict success, a com-

parison had to be performed to the cross-entropy values
obtained in the paper. Consequently, the simulations should
take into account the fact that the area and the windows
distribution differ. Consequently, the simulated space world
was divided into windows similar to the respective states’
sizes. Thus, we performed the Small-World simulations
again, and cross-entropy divergence measures for each pro-
cess were calculated taking into account the new windows’
sizes.
Because the Small-World data were now calibrated to

represent the world of the hybrid corn, the cross-entropies
of both the Small-World and the real case could be
matched into the same graph. Hence we could “plug” the
cross-entropy value into the logistic curve and use it as
the independent variable to read the value of the depen-
dent variable, or the probability of hybrid corn becoming
a success. For the cross-entropy that we found (1.63), we
computed the probability of success from the logistic regres-
sion whose independent variable is the cross-entropy and
whose dependent variable is the outcome, and found that
the probability of success was 99.9%.
Next we demonstrate the comparison of forecast accu-

racy as we move from coarse partitions to finer ones. We
first performed this test on field data (the hybrid corn case).
Instead of using the countries as windows, we used two
other classifications (census regions and divisions of the
U.S.) with four and nine windows respectively. The four

49 windows (clear discrimination)
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windows are the standard division of Northeast, Midwest,
South, and West, and the nine windows are a finer divi-
sion, i.e., the subdivision of the South into South Atlantic,
East South Central, and West South Central. We simulated
the U.S. as a Small-World representation, and calculated
the predicted probability for success. In nine windows, the
result again was 99% for success. This is probably related
to the fact that hybrid corn is indeed a successful inno-
vation. However, in four windows classifications, the pre-
dicted probability dropped to 45%, an indication of failure.
We also performed the test in synthetic data using

cellular automata. As suggested by Parzen, the optimal win-
dows number is the square root of the number of individ-
uals (2,500); thus in our case it was 50. In order to stay
within a symmetrical environment, we performed all anal-
yses of the simulated data on squares, and thus the near-
optimal number is 49 windows. We varied this number
above and below 49. We noted three effects: First, a number
of windows larger than Parzen’s recommendations leads
to a decrease in the correct predictions: 83% as opposed
to 90%. Second, decreasing the number of windows leads to
a noticeable decrease in correct predictions: from 90% for 49
windows, to 80% for 36 windows, 80% for 25 windows, 72%
for 16 windows, 65% for nine windows, and 57% for three
windows (this last figure is not significantly different than
random draw). Third, the clear step-function of the logis-
tic curve, whose purpose is to separate success from fail-
ure, slowly metamorphosed from an S-shaped function to a
straight line. To illustrate this change, consider the graphs
below:
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