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The paper presents a solution to a diffusion process in which advertising has two goals - 
Awareness Creation and Trial Inducement. It is shown that the advertising time paths can be 
either monotonic or single peaked. The solution technique involves phase diagrams where the 
boundaries are non-stationary. General discussion of such techniques is provided. The paper 
proves the existence of a stationary equilibrium to which the paths converge. Furthermore, this 
two state variables, two control variables equilibrium point is conditionally stable. 

1. Introduction 

Most OR and Economics models depicting advertising in a dynamic 
context regard advertising as a single variable which directly or indirectly 
effects the revenues of the firm. See, for example, Gould (1970), Nerlove and 
Arrow (1962), Sethi (1977,1979). Marketers, however, do not regard 
advertising as a single variable with a single objective. The objectives are 
typically stated in terms of a communications effect. The objectives will be 
stated in terms of increasing awareness, changing attitude, changing 
predisposition to buy, or some combination of the three. [See, for example, 
Tull and Hawkins (1980, p. 646) or any other marketing research textbook.] 

This paper presents a dynamic model based on a diffusion process which 
makes the distinction between two types of advertising objectives - 
increasing awareness and changing predisposition to buy. For simplicity 
these types will be denoted throughout the paper as awareness versus trial 
advertising. 

The paper investigates the optimal policy implication of such a model. The. 
model is based on the Dodson and Muller model (1978). The latter is a 
diffusion model which generalizes several models both in economics and in 
management science, such as Gould (1970), Nerlove and Arrow (1962), 
Vidale and Wolfe (1957), Palda (1965), Bass (1969), Nicosia (1966) and 
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Glaister (1974). The interested reader is referred to the survey papers by 
Sethi (1977) and by Mahajan and Muller (1979). 

The model deals with an introduction of a new product in a market of size 
N, where N is divided into x(t) - the number of people who are unaware of 
the existence of the product, y(t) - the number of potential customers who 
are aware of the product but have not yet purchased it, and z(t) - the 
number of current customers who have purchased the product. Since x, y, 
and z partition N into three distinct groups of ignorant, potential and 
current customers, it follows that 

x(t)+y(t)+z(t)=N. (1) 

Advertising is broken down to its two components: (1) awareness (denoted 
by u) which informs consumers about the product and thus transfers them 
from the unaware group x into the potential group y, and (2) trial 
advertising (denoted by u) which persuades consumers to purchase the 
product and transfers them from the potential consumers group y into the 
current customers group z. 

The flows of consumers from and into the different groups are given in the 
following transition equations: 

i = - ux - kx( N - x)/N, x(O) = N, (2) 

j=ux+kx(N-x)/N-(a+u)y+6z, y(O)=O, (3) 

i=(a+u)y-6z, z(0) = 0. (4) 

The sales rate is given by 

40 = (a + 4y(t) +gz(t), (5) 

where k is the contact rate, a is the trial (first purchase) rate, g is the repeat 
purchase rate, and 6 is the switching rate, i.e., the rate at which current 
customers are purchasing rival brands. 

The explanation of eq. (2) is as follows: The people who know, N-x, 
contact and inform a total of k(N -x), out of which only a fraction of x/N 
are newly informed. In addition, out of the total number of people informed 
via advertising uN, only a fraction of x/N are newly informed. Eqs. (3) and 
(4) are similarly constructed. 

The advertising expenditures needed to have the awareness effect u and the 
trial effect u are denoted by U(u) and V(u), respectively. Those are assumed 
to be convex functions. 
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The present value of the profit stream to be maximized 

$ e-” {P@) - W(O) - WO>> dt, 

335 

is given by 

where r is the discount rate, and p is the net price. It will be convenient to 
express the objective function as a function of one state variable z instead of 
the sales which involve three variables, y, a, and z. 

Substituting from (5) for s(t) and from (4) for the terms (a+u)y(t) yields 

$e-” {p[i+6z+gz]-U(u)-V(u)}dt. 

Integrating the term e-‘3 by parts and using the initial condition z(O)=0 
yields 

$e+[cz-U(u)- V(u)]dt, (6) 

where c is given by 

c=p(r+J+g). (7) 

The three equations (2)-(4) are dependent as they sum up zero. The choice 
of which two of the three to use is one of convenience. Eqs. (2) and (4) were 
chosen where the term N-x-z was substituted for y, using (1). In the next 
section the maximization problem will be formally presented and solved. 
Analysis and discussion of the solution will follow. 

2. Discussion of the necessary conditions 

In this section the maximization problem of the firm facing the 
environment described by the diffusion process is presented and solved. 
Analysis and discussion of the solution will then follow. 

The problem is to choose u(t) and u(t) such as to maximize eq. (6), 

$e-“[cz-U(u)-V(u)]dt, 

subject to eqs. (2) and (4), 

1 = - ux - kx( N -x)/N, x(0) = N, 
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and 

i=(a+o)(N-x-z)-dz, z(0) = 0, 

for u 2 0 and u 2 0. The functions U and I/ satisfy U’, V’ > 0 and U”, V” > 0 for 
all u>O and u>O. U’(0) = V’(0) =O. For example, quadratic functions will 
satisfy the above conditions. ‘It is rather straightforward to check that the 
equations (2)-(4) and the initial conditions guarantee that both x(t) and z(t) 
are indeed bounded between zero and N. As for the equilibrium itself, it is 
possible to show its existence (see appendix 1) and its stability (see appendix 
2). 

What will follow now will be a formal solution of the problem. An 
interesting technical aspect of this problem is that it involves phase .diagrams 
with non-stationary boundaries. For the pioneering work on this subject, see 
Kamien and Schwartz (1977); for the use of this technique for differentional 
games, see Fershtman and Muller (1983). 

Appending (2) with a multiplier -J(t) (so that 1 would be non-negative) 
and (4) with a multiplier +p(t) to the integrand yields a current value 
Hamiltonian H, 

Since the variable y plays an important role, define y to be y= N -x-z, or 
using eqs. (2) and (4), one can generate eq. (3), 

j=ux+kx(N-x)/N-(a+u)y+dz, y(0) = 0. 

The state variables x,z, multiplier functions I,p, and control variables u, u 
have to satisfy not only (2) and (4) but also the following conditions if they 
are to maximize (6): 

awau = - w) + lx s 0, uaH/au = 0, (8) 

m/au = - ~(4 + py 2 0, OaHlau = 0, 59 

and 

i = rl + aHlax and p = r/1 - aHlaz, 

that is 

l=(r+u+k(N-2x)/N)&p(a+u), 

/i=(r+a-tu+b)p-c. 

(10) 

(11) 
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The objective now is to manipulate the above necessary conditions so as 
to be able to trace the behavior of the optimal path in the u,u space. It 
should be noted that altogether we have four time-autonomous differential 
equations with four unknowns [eqs. (2), (4), (12) and (14) and the variables 
x,z (or x and y), u and u]. Since the method of investigation is graphical, it 
involves the two-dimensional u,u space, thus each level of the state variables 
yields a different cross-sectional cut. Thus in the u, u space, the ti =0 and G=O 
boundaries will not be stationary as long as the state variables are not 
stationary. 

If A(O) ~0, then, according to (8), u(O) =0 and the optimal behavior for the 
firm is not to enter the market. If A(0) >O, then u(O) >O, and as long as 
u(t) > 0, an equality holds in (8), that is 

V(u) = Ax. 03’) 

If ~(0) ~0, then according to (1 l), b(O) CO, and therefore P(t) <,5(O) < 0 for 
all t, which rules out the convergence to a steady state. Therefore p(O)>O. 
However, since y(0) =0, then according to (9), u(O)=& otherwise z$H/3u will 
not be zero. By the same argument, since j(O) >O, we have that for 
t>O, y(t) > 0. That requires u to be positive since otherwise i?H/au will be 
positive. The optimal policy then is to start with u(O) =O, but u(t) >O for all 
t>O. The equality in (9) holds for all t>O, i.e., 

V(u) = py. (9') 

Differentiating (8’), substituting (2) and (10) for i and A, respectively, and 
substituting (8’) for A and (9’) for p yields 

U”li=Ax+Li=(r+u+k(N-2x)/N)Lx 

or 
-p(a+u)x--lux-Ikx(N-x)/N, 

U”li = U’(r - kx/N) - V(a + u)x/y. (12) 

Thus in the u, u space, zi vanishes whenever (12’) holds 

U’(r - kx/N) = V(a + u)x/y. (12’) 

If r> k, this curve has a positive slope throughout. If r< k, then the line is 
not in the positive quadrant until x is small enough such that r> kxN. In 
both cases, when the zi=O locus appears in the positive quadrant of the u, u 
space, it has a positive slope. From above and to the left of ri =O, u is 
increasing. 
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Note that the appearance of x and x/y in (12) implies that this boundary is 
not stationary in the u, u space unless x and y are stationary. 

Since 3 c 0 throughout, d(r - kx/iV)/dt > 0 for all t. If d(x/y)/dt 5 0, then the 
li = 0 boundary necessarily moves ‘down’ in the u, v space as depicted in fig. 1. 
Before turning to the ti= 0 locus, some discussion is needed in general on 
phase diagrams with non-stationary boundaries. 

The discussion will rely on the derivation of the zi = 0 boundary in the u, u 
space (see fig. 1). The objective is to point out an argument which might 
arise in connection with the non-stationarity of one or more of the 
boundaries. 

We first check the behavior of u at t=O, by evaluating (12) when x =N 
and v=O, 

tJ”till=o=N[(r-k)A(0)-p(O)a]. (13) 

If r> k and a is small enough (example u= k=O), then ti(0) > 0. When this 
holds, it is evident from fig. 1 that the optimal path starts to the left of the 
u = 0 locus. 

One might now argue that the path cannot cross the falling ri = 0 line since 
when it does, the path is stationary vertically (since ti=O) but the c=O locus 

Fig. 1. The movement of the ti=O locus when d(x/y)/drsO. This movement will be referred 
to as a movement ‘down’. The reverse movement will be called a movement ‘up’. ti=O is 
U’(r- kx/N)= V’(a+u)x/y. The curved arrow denotes the movement of the ‘ti=O locus. The two 
straight arrows imply that above and to the left of ti=O, u is increasing while it is decreasing 

below and to the right of the ti=O. 
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is not. Therefore, in the next instant the boundary would fall below the path, 
so that the path cannot intersect the boundary. 

This argument will be referred to as the ‘intersection argument’. This 
argument, despite its attractiveness, is incomplete and might be misleading. 
Since the validation of this last statement is rather complex technically, it is 
deferred to section 3. Its conclusion is that the discussion on the possible 
path is now rather complex since very little can now be utilized to rule out 
certain paths which seemingly satisfy the necessary conditions. Still some 
behaviors can be ruled out as will become evident shortly. 

We turn now to the d=O locus. Differentiating (9’), substituting (3) and 
(11) for j and fi, respectively, and substituting (9’) for cc, yields 

= r v' - cy + pux + pxk(N -x)/N + 8p(y + z), 

= q-r + ux/y+xk(N-X)/NY + 6(N -x)/y] -cy, (14) 

Thus the fi = 0 boundary is 

V[r+(x/y)(u+k(N-x)/N+d(N-x)/x)] =cy, (14’) 

This is clearly a decreasing curve in the u, u space. The intercept of this curve 
with the v axis is given by 

Since zi < 0 throughout, d(k(N -x)/N + d(N -x)/x)/dt > 0. In case that 
d(x/y)/dt>O and ~-CO, this line moves ‘down’, i.e., folds towards the origin 
as depicted in fig. 2. However, if d(x/y)/dt ~0 and j>O, this line may very 
well be moving in the opposite direction of the above movement, i.e., move 
‘up’. 

From (14), above and to the right of ti = 0, u is increasing, i.e., an increase 
either in p or u will increase d. 

The next issue is where, in the u,u space, does the path start and where 
does it end. At t=O from (12’) and (14’), the ri=O locus is the u axis, and the 
d =0 is the u axis since x(O) = N and y(0) = 0. 

The ti=O locus starts immediately moving ‘up’ (see fig. 2 for the definition 
of moving up or down), while the ti=O depends on the parameter 
configuration. To see precisely what happens to ii(O), we use (1.2) with (8’) 
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Fig. 2. The movement of the d=O locus when j<O and d(x/y)/dt>O. This movement will be 
referred to as a movement ‘down’. The reverse movement will be called, obviously, ‘up’. d=O is 
V’[r+(x/y)(u+k(N-x)/iV+&N-x)/x)]=cy. The curved arrow shows the movement of the 
ti=O locus. The two straight arrows imply that above and to the right of ti=O, v is increasing, 

while below and to the left of C=O, v is decreasing. 

substituted for V’(u) to get 

If I < k, then r.i(O) ~0. If I > k and a is small enough (for example, a = k = 0), 
$0) > 0. A similar analysis reveals that C(O) >O. Thus the optimal path 
starts always above the d=O and on the ti=O. Immediately after t =O, it is 
either above or below the ti=O depending on a, r, and k. This is shown in 
fig. 3. From eq. (2) 1= 0 if and only if x =O. In this case u necessarily is zero 
since any positive u will yield the same result because ux = 0. In contrast, the 
steady state level of v, denoted by v*, is positive satisfying jointly with x, 1 
and p, i=O,~=O,~=O, V’=p(N-z). 

The objective now is to rule out a path which moves counter-clockwise as 
is shown in fig. 5a. 

In order to do that, we need to trace the movement of another locus, the 
d(x/y)/dt = 0. 

Upon using (2) and (3) the equation d(x/y)/dt=O can be written as 

(x/y+l)(u+k(N-x)/N)+6(N/y-x/y-l)=a+v. (15) 



” 

(u(O), 0) 

” 

(u(O), 0) 
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(b) 

Fig. 3. At t =O, the ti=O locus is the u axis, while the d=O locus is the v axis so that the path 
can initially be in region 1 or region 2 depending on the initial relative rate 01 movement (speed) 

of the loci and the path. 

Suppose the path now is in region 1 of fig. 3. It might have begun there or 
might have begun in region 2 but then was caught by the ti=O locus. In 
order for the d=O to catch up with the path, the path could not have already 
caught up with the d(x/y)/dt=O locus. If it did and d(x/y)/dt>O, this implies 
that j<O (since 1.~0 for all t) so that the d=O moves down (see fig. 2). This 
movement is in the opposite direction of the movement of the path so that 
no intersection is possible. Therefore, the ti=O locus caught up with the path 
while d(x/y)/dt < 0. This is shown in fig. 4. 
JFDC B 
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Fig. 4. d=O is U’(r-kx/n)=V’(a+u)x/y, d=O is V’[r+(x/y)(u+k(N-x)/N+b(N-x)/x)]=cy, 
d(x/y)/dt=O is (x/y+l)(u+k(N-x)/N)+b(N/y-x/y- l)=a+v. 

Now the path is in region 4. The d(x/y)/dt=O locus cannot now catch the 
path, since when it does, from (15) it is clear that since d(x/y)/dt=O (and so 
~cO), the d(x/y)/dt=O locus will be falling. Since the path is moving in a 
northwesterly direction, no intersection takes place. That implies that zi =0 
locus will continue to move down since d(x/y)/dt<O. This means that the 
path cannot intersect the ti=O locus. Since t.i>O, it will imply that ri>O for 
all t. This contradicts the steady state being composed of u > 0 and u =O. 
Therefore, we conclude that if there exists a path leading to a steady state, it 
cannot move counter-clockwise. Such a path is shown in fig. 5b. 

It should be noted that this is the general pattern possible. It still might 
have several extrema both in u and in v. Though these behaviors certainly 
are counter-intuitive, they cannot be ruled out rigorously without relying on 
the ‘intersection’ argument given before. 

The temporal paths of awareness and trial advertising are given in fig. 6. In 
all cases the trial advertising gradually increases while the awareness 
advertising is either monotonic or single peaked. As the product matures, the 
awareness/trial ratio decreases (not necessarily monotonically). In the steady 
state itself, advertising is purely trial. Since the steady state is not attainable 
in finite time, advertising consists of a combination of trial and awareness 
advertising for all finite time. 

The result of virtually all models [with the exception of Naslund (1979)] is 
to have a monotonically decreasing advertising over time. This, however, 
does not have to hold if several objectives of different types of advertising are 
sought. Thus, awareness advertising can indeed decline over time. However, 
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”  

(a) 

(b) 

” 
Fig. 5 

since trial advertising will increase, the total expenditures will depend on the 
relative costs of having these respective effects. Specifically, the total 
advertising budget expenditure E(t) = U(u) -I- V(v). If u is initially increasing, 
then this expenditure E increases with time. If u is decreasing initially and 
thus decreasing throughout, then E can be negative or positive, depending on 
the relative magnitudes of the marginal costs U’ and I”. 

As mentioned before, one exception is the paper by Naslund which relies 
on the model by Nicosia. Naslund found some condition under which pulsing 
is an optimal policy where this policy calls for alternating periods of high 
and zero advertising levels. The problem with his analysis is that the 
conditions are rarely met. See appendix 3 for a formal proof. 
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(a) 

v(t) 
(b) 

Fig. 6. The temporal paths of awareness and trial advertising. 

3. The intersection argument 

The discussion in this section will rely on section 2, particularly on the 
derivation of the ri =0 boundary of the u, II space (see fig. 1). The objective in 
this section is to rule out an argument which might arise in connection with 
the non-stationarity of one or more of the boundaries. 

For the remainder of this section, assume that $0) > 0. From fig. 1, it is 
evident that the optimal path starts to the left of the ti=O locus. One might 
now argue that the path cannot cross the falling ti=O line since when it does, 
the path is stationary vertically (since ti =0) but the ri =0 locus is not. 
Therefore, in the next instant the boundary would fall below the path so that 
the path cannot intersect the boundary. The argument will .be referred to as 
the ‘intersection argument’. This argument, despite its attractiveness, might 
be misleading. To see that, we reconsider the same movements as projected 
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in the u, x space (fig. 7), 

ti=O is U’(r-kx/N)= V’(a+u)x/y. 

The ti = 0 is moving ‘up’ if d > 0 and j < 0. The path has to move to the left of 
the boundary since a(O) > 0. We now employ the argument in the U, u space. 
As long as j > 0, the li =0 locus moves down since d(x/y)/dt <O (see fig. 1). 
Assume, therefore, that j<O but such that d(x/y)/dt is still negative. This is 
clearly possible since 1~0. The ti = 0 boundary in the u, u space is falling, 
thus at the moment of intersection of the path and the boundary, the path is 
stationary vertically while the locus falls. Therefore, the ti=O locus falls 
below the path, and no crossing has been made. 

Consider, at the same moment, the u, x space (fig. 7). Since j ~0, the path 
moves ‘up’; therefore, at the moment of intersection, the path is stationary 
vertically (ri =0) while the ti =0 locus moves up. Therefore at the next 

”  

tg > t2 z t1 > to 

Fig. 7. ri = 0 is U!(r- !qW) = V’(a + 0)x/y and t, > t, > t, > 1, The movement according to the 
curved arrows (called ‘up’) holds as long as d>O, jt0. The intersection occurred at t = t,. Thus 

the path was above the ti=O locus before t2, and below it thereafter. . 
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moment the locus will be above the path, thus the crossing has been 
established. Thus, relying only on one phase diagram might lead to the 
wrong conclusion. 

The problem lies in the fact that the above argument takes into account 
the vertical movements of the locus and the path but fails to consider their 
horizontal movements. 

In general, it is clear that the occurrence of an intersection depends on the 
horizontal movement of the ‘path’ (denoted by tip) versus the horizontal 
movement of the ‘locus’ (denoted by ti,). In order for the path to intersect 
and cross the ti=O locus, i),, >d,. This condition can be expressed as follows: 

Suppose that ti = F(u, u, t). So the ti = 0 locus is given by F(u, u, t) = 0. For 
definiteness, suppose that F, > 0, F, < 0 and F, > 0, as illustrated in .fig. 8. 

”  

Fig. 8. ti = F(u, v, t), so that the ti = 0 locus is given by F(u, v, t) = 0, where F, > 0, F, > 0, F, < 0. 

ti, is computed from differentiating the zi =0 locus with respect to time 
while keeping u fixed, i.e., 

d[F(u,u,t)]/du(,=,=F,ri+f,d+F,=F,li,+F,=O, 

or 

d, = - FJF,. 

The condition for crossing ti,>d, can be written as 

d, > F&F,. 
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In principle, the application of this condition seems straightforward. F, 
and F, are calculated by differentiation of the ri =0 locus. li, (the horizontal 
movement of the path) is given by the necessary conditions since they have 
to be satisfied by the path. 

Appendix 1: Existence of an equilibrium 

Since at equilibrium, u=O, eq. (2) implies that x=0. Setting eqs. (4), (9), 
(10) and (11) equal to zero yields the following four-by-four system: 

6z=(a+u)(N-z), (A4 

v(u)=p(N-z), (A-2) 

(i-+k)A=p(a+u), (A.31 

(r+a+u+6)p=c. (A-4) 

Eqs. (2) and (8) now become identities. Given p and u eq. (A-3) determines 1. 
Thus we can regard eqs. (A.l), (A.2) and (A.4) as a three-by-three system. 
Substitute ~1 from (A.4) into (A.2), and substitute z from (A.l) into (A.2) to 
achieve one equation in u, i.e., 

(a+6+u)(r+a+u+6)V’(u)=cN6. (AZ) 

When u=O, the L.H.S. of (AZ) vanishes. When u+co, L.H.S.+co. Since it is 
continuous in u, then there exists a value u* which satisfies (AZ). The levels 
of p* and z* will then be found from eqs. (A.4) and (A.l), respectively. 

Appendix 2: Stability of the equilibrium 

Substituting for y from eq. (1) yields four differential equations for the four 
variables in question: x, z, u and u [eqs. (2), (4), (12) and (14)]. Linearizing 
the equations in the standard way, i.e., expanding them to a Taylor series, 
around the equilibrium point x*, z*, u*, u* taking the linear part only,. the 
homogeneous system becomes the following: 

i= -kx, (A.3 

r(u*)(a + u*) zi= -(N-z*)U”(U*)X+r~, 
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where 
L*= l/v(u*)(N-z*). 

Consider the following partitioned matrix: 

(A-7) 

64.8) 

0 0 
0 0 

- 

---------- 
-(tz+u*+6) 1 (iv-z*) ’ 

a4 a5 

where aI, a,, a3 are the values corresponding to the above system (which are 
irrelevant for computation of the eigenvalues), and a4 and a5 are given by 
L* [2c(N -z*) - r V’(u*)] and I + 6N/(N -z*), respectively. The eigenvalues of 
the system, denoted by Ai can now be easily calculated to be as follows: 
A, = -k, A, =r, A, and A, are the solutions of the following quadratic 
equation: 

A=-rA+M*=O, 

where M* is defined by 

M*= -(a+u*+6)(r+a+u*+6)-V’(u*)(r+2(a+u*+6))/V”(u*), 

where in the last two equations, z* was substituted from eq. (A.l) of 
appendix 1, and the constant c was substituted from eq. (A.2’) of appendix 1. 

Since M* < 0, the quadratic equation in A yields two real solutions, one of 
which is negative and the other positive. Altogether we have four distinct 
roots, two positive and two negative and thus this equilibrium is 
conditionally stable, i.e., there exists a real two-dimensional manifold S, 
containing the equilibrium point such that any solution starting on the 
manifold will converge to the equilibrium. Uniqueness is guaranteed in the 
same way as in the two-dimensional saddle point, i.e., any solution not on 
the manifold will not converge to the equilibrium point. 

Appendix 3: On pulsing policies 

The objective of this appendix is to show that the conditions under which 
Naslund (1979) found pulsing to be optimal are rarely met. 
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The condition is that the discriminant (LYU-fib)’ +4bma is negative. For 
this to happen, one or all of the parameters a, b and M are negative, and 

Since b cannot be negative [see Nicosia (1966, p. 240) on whose model 
Naslund is basing his analysis], then the negativity of bma implies the 
negativity of either a or m, but not both. The parameter m is defined as the 
parameter converting attitude into motivation, where attitude is the feeling 
towards the whole product category and motivation is the stronger feeling 
towards the specific brand. 

Thus, if m is negative, the more favorable the consumer feels about the 
whole product category, the less favorable he will be towards the brand in 
question. This is indeed a rather peculiar situation. Furthermore, for a new 
product, we can check the sign of the sales (Xi in Naslund notations). 
Initially, at t, sales of the new product are at zero, i.e., X,(t,) =O. The 
optimal policy is to start advertising at capacity and thus, checking the sign 
of the derivative of X2 at t,, it is clear that at to’, X,(t,‘) >O, thus dX,/dt at 
tz is negative. Thus Xi (to’) < 0. 

This contradicts the requirement that X,(t)>0 for all t. 
Thus the parameter m cannot be negative and it is the parameter a which 

is negative. Nicosia does not discuss this possibility at all when dealing with 
the underdamped (negative discriminant) case apparently because of its lack 
of intuitive appeal. Negativity of a implies that positive changes in 
motivation will reduce sales. Suppose we do accept this possibility and check 
whether the discriminant can be negative under some plausible conditions. 
Nicosia’s model was compared to a model similar to this one by Dodson 
and Muller (1978). The latter model differs from the one given here by the 
fact that the trial advertising u does not appear there but a forgetting 
parameter 4 was added. From the comparison, it is evident that 14bmnl= 
- a6 (since one of them, by assumption, is negative) and (au -pb)’ =(a-~?)~. 
Thus, 

This is always positive since -a6 >O. Thus the discriminant is not negative 
even if a is. 
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