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CHAPTER 5

Strategy-proofness: the existence of
dominant-strategy mechanisms

Eitan Muller and Mark A. Satterthwaite

1 Introduction

Economic theory takes as axiomatic that individuals have preferences
over possible allocations and that they seck their most preferred alioca-
tion. Except in unusual and happy circumstances the result is conflict: the
several agents disagree over which outcomes are preferable and they
resolve their conflict within the rules of whatever allocation mechanism
under which they happen to be operating. Since the outcome isimportant,
each agent devises a strategy that he believes will be effective in securing,
as nearly as possible, an outcome that is highly preferred by his own
lights.

This penchant that individuals have for strategizing causes economic
theorists trouble because the essence of an individual’s strategic choice is
to guess correctly the actions of other individuals and then to choose the
action that results in the best attainable outcome. This means that the
properties of a particular allocation mechanism cannot be determined in
any simple way. Specifically, an allocation mechanism might be thought
to operate by asking agents to state their preferences and then calculating
from this information an outcome that meets an appropriate optimality
criterion. Strategic behavior confounds this process because one may
calculate, given the probable strategies of other agents, that misrepre-
senting one’s preferences may result in a more preferred outcome than
stating them truthfully. Therefore in studying the properties of a particu-
Iar allocation mechanism, theorists must not only understand how the
mechanism aggregates the information individuals put into it, they must
also model the information each agent has about every other agent and
how each agent uses this information to decide what information to put
into the mechanism. This is difficult. '

Strategy-proof mechanisms represent the most direct and elegant
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132 Eitar Muller and Mark A. Satterthwaite

means conceivable for cutting through the problems that strategic behav-
ior poses for our understanding of allocation mechanisms’ performance.
An allocation mechanism is defined to be strategy-proof if and only if
telling the truth is always a dominant strategy for every agent. A strategy
is dominant for an agent if, irrespective of what strategies the other agents
play, no other strategy results in an outcome that the agent prefers. An
agent who has a dominant strategy need not guess what other agents are
likely to do, because that guessing has no utility; the agent’s dominant
strategy is best no matter what other agents do. Therefore for strategy-
proof mechanisms the question of strategy never arises, because every
agent has no reason not to follow the dominant strategy of truth telling.
This makes the analysis of strategy-proof mechanisms trivial in compari-
son to the analysis of mechanisms that are not strategy-proof, because
questions of the information that agents possess about other agents can
be ignored.

This essay’s purpose is to explore the current state of our knowledge
concerning the possibilities for constructing strategy-proof mechanisms.
We focus on strategy-proof mechanisms rather than dominant-strategy
mechanisms because every dominant-strategy mechanism is equivalent
to some strategy-proof mechanism. Consequently no generality is lost
by our focus on strategy-proofness rather than dominant strategies. Sec-
tion 2 presents an important, baseline result: the Gibbard— Satterthwaite
theorem. It states that reasonable strategy-proof allocation mechanisms,
while exceedingly attractive in the abstract, simply do not exist when
agents’ admissible preferences over the set of feasible alternatives are not
a priori restricted to some subsct of the set of all possible transitive
orderings of the feasible alternatives. Thus, in the most general case,
strategizing cannot be taken out of economic behavior by cleverly design-
ing the allocation mechanism. '

The remainder of the essay explores the degree to which the general
case must be specialized in order to make the construction of a reasonable
strategy-proof mechanism feasible. We pursue two approaches to this
problem. In Section 3 we specify with increasing precision what we mean
by a reasonable strategy-proof mechanism and then investigate how
tightly the set of admissible preference orderings must be restricted in
order to make construction of the specified mechanism possible. In
Section 4 we reverse the procedure. There we specify restrictions on the
set of a priori admissible preference orderings in ways that have economic
relevance and then ask what reasonable strategy-proof mechanisms can
be constructed given those particular restrictions on domains. Conceptu-
ally these two approaches are dual to each other; in practice, however, no
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one has succeeded in making an adequate formal connection between
them. Therefore we present them separately.

‘ No completely unambiguous conclusion can be drawn from the work
dlscus.sed in this essay. As reported in Section 4, for several specific
domains of admissible preferences the results are negative in that no
reasonable strategy-proof mechanism can be constructed. In Section 3 we
report results that show the existence of domains that (i) are large relative
to the size of the unrestricted domain and (ii) do permit construction of
reasonable strategy-proof mechanisms. Nevertheless no examples have
as yet been constructed that succeed in showing that these relatively large
restricted domains have relevance to the types of restrictions on admissi-
ble pr.eferences that naturally occur in economics. )

. This essay is not a survey. We only report on a small fraction of the
mterestmg work that has been done in the existence of strategy-proof
mechanisms. We have tried to present some essential ideas from this

body of research in a manner that contributes to the reader’s intuition and
understanding.

2 Problem formulation and a basic theorem

Basic model

Most Qf the work on strategy-proof mechanisms has been conducted in a
very simple framework that focuses on agents’ preferences and the incen-
tive they may have to follow dominant strategies in revealing those
preferences.! A group f = {1, 2, ..., n} is a fixed set of n individuals
who must select an alternative from a feasible set of alternatives. The set
A ={x,y, z,..., w}isthe set of all conceivable resource allocations: it
has cardinality of |4|. Each individual i € / has a transitive binary preft;r—
ence relatton P; over the set A. Thus, for all pairs of alternatives x, y € A
am_i for every individual i € /, one of three cases is true: xP,y denoting
strict Preference for x over y, yPix denoting strict preference for y over x
or neither xP;y nor yPx denoting indifference between x and y, Indiffer:
ence between x and y is alternatively denoted by xPy.

Not every preference ordering is necessarily admissible. Let ) be the
set of all complete and transitive preference orderings P; that any individ-
ual ; might rationally hold. In other words, if P; ¢ (2, then P; is a prefer-
ence ordering that, while being transitive, violates some principle of

) L .
An exception is Pos?lewalte [1979], who wrote about the incentives individuals may have
to misrepresent their initial endowments.
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rationality that clearly applies to the situation in question. For example,
in economic contexts if the two-dimensional vector x represents a com-
modity bundle and that bundle dominates both components of a second
bundle y, then the principle of nonsatiation implies that an ordering P; for
which xP;y may be admissible (and thus be an element of () while an
ordering P; for which yPx cannot be admissible. The set £}" is the n-fold
Cartesian product of ). The group’s preference profile is the n-tuple,
(P, ..., P,) e, of the individual orderings.

The set of feasible allocations, B, may be either A in its entirety or a
subset of it. The group’s task is to select a single allocation from B. They
do this, in effect, by voting. Each individual i reports a preference
ordering O, e ) for input into the allocation mechanism Fthat aggregates
the profile of reported preferences down to a single element of B.
Formally, let #(A) be the set of subsets of A. An allocation mechanism is
a function F: QY x ®(4) — A. Thus F(Q, B) is the group’s choice
when the profile of reported preferences is Q and the feasible set is
B. The preference ordering 0, an individual reports may or may not be
identical to his preferences P,; the choice of what to report is his since
preferences are private and impossible for outsiders to ascertain.

That individuals cannot be forced to report their preferences P;
sincerely for input into the allocation mechanism is the crux of the
problem this essay considers, Eachindividual agent may calculate whether
it is in his or her interest to report honestly. An agent i with preferences P;
has an incentive to manipulate the mechanism F at profile P/P; € " and
feasible set B € P(A4) if

F(P/Q;, B) P; F(P/P;, B), (2.01)
where Q,‘EQ, (P/Q.!) = (Pla - 7Qi$ e :Pn)',ﬁ Qn, and (P/Pr) =
P=(P,...,P,...,P,). Thecontentof (2.01)is thatif agent i is to

be able to manipulate the outcome at profile P = P/P;, then he must
have available an admissible ordering Q, that, when played as a substitute
for his true preferences P;, results in an outcome he strictly prefers.

Dominance and strategy-proofness

A mechanism F is strategy-proof if no admissible profile P e (¥, no
feasible set B € P(A), and no agent i exists such thatat profile Pagentican
manipulate mechanism F. Individuals never have an interest in not report-
ing their preferences accurately when the mechanism is strategy-proof.
An implication is that if a mechanism is strategy-proof, then every agent
always has a dominant strategy. Formally, a strategy Q; e {}is dominant
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at feasible set B e P(A) for agent i with preferences P; if no profile
P/Q; e ' exists such that

F(P/Q:, B) P F(P/Q,, B). (2.02)

In other words, the ordering (; is dominant for agent / if and only if no
profile exists for which playing another ordering Q} would result in the
realization of a strictly preferred outcome for agent i. A mechanism, F, is
a dominant-strategy mechanism if, at every P e " and B ¢ P(A), every
agent has a dominant strategy.

The great attraction of dominant-strategy mechanisms is that agents
need no information about other agents’ preferences in order to play
optimally. Suppose Fis not a mechanism for which agents have dominant
strategies. Inspection of (2.02) shows that if agent { is to manipulate
successfully mechanism F at profile P, then he or she must know that
profile P/(Q; is being realized rather than, for example, profile P'/Q;. To
know this requires good information on i’s part about other agents’
preferences and strategizing. None of this information is needed if F
always gives individual { a dominant strategy. No matter what profile is
realized, he plays that ordering 0, that is dominant for his true preference
ordering P;.

The set of all possible strategy-proof mechanisms is clearly a subset of
the set of mechanisms that always give every agent a dominant strategy. -
We restrict ourselves to considering only strategy-proof mechanisms,
because, as Gibbard [1973] showed, every dominant-strategy mechanism
that is not strategy-proof is equivalent to a strategy-proof mechanism. No
generality is gained by looking at the broader class. This equivalence is
seen as follows. Suppose Fis a dominant-strategy mechanism. Therefore
for each agent { a function o {2 — () exists that associates his true
preference ordering P; with his dominant strategy ; for that particular
ordering; that is, o;(F) = ;. Define a new mechanism, F”, as the
composition of the F and o functions:

F(Py,...,P, B)=Flo|(P),...,0.P,), Bl (2.03)

The mechanism F¥ is strategy-proof. If, contrary to the assertion, it were
not strategy-proof, then an agent /, a profile P e 7, a feasible set
B € P(A), and an ordering (J; € { would exist such that / would have an
incentive to manipulate F:

FY(P/Q;, B) P, F"(P/P;, B). (2.04)
Relation {2.04) may be rewritten in terms of the original mechanism F
F(Q/Qi, B) P, F(Q/Q:, B) (2.05)
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where O = [o(P)), . . ., o.{P,)]is the vector of the agents’ dominant
strategies, O; = o,(P;) is agent i’s dominant strategy when his prefer-
ences are P;, and Q" = o,(Q;) is agent i's dominant strategy when his
preferences are 0}, But (2.05) contradicts the hypothesis that Q; = o,(P;)
is a dominant strategy for agent i because he does better playing (.
Therefore F” is a strategy-proof mechanism because if it were not, then F
would not be a dominant strategy mechanism asinitially assumed. Finally,
in addition to being strategy-proof, FV is equivalent to F for agent
because if, in utilizing each mechanism, every agent always plays his
dominant strategy, then, for any preference profile, F and F” give iden-
tical payoffs.®

Impossibility theorem

Can strategy-proof mechanisms be constructed? Certainly, inasmuch as
we can easily identify four general types:

1. Let, for all admissible profiles P € ", F(P, B} = x, wherexisa
fixed element of A. This is an imposed mechanism. It is strategy-
proof because the agents’ preferences do not influence the out-
come and therefore each agent has nothing to gain from misrep-
resenting his preferences.

2. Let, for some i, all admissible sets B € P(A), and all admissible
profiles P € Q", F(P, B) = maxg(P;) where maxg(-) picks the
clement of B that is maximal according to the ordering P;. ® This
is a dictatorial mechanism where agent i is the dictator. It is
strategy-proof because agent i gets his most preferred alternative
if he reports his preferences truthfully and no other agent has any
influence on the decision. R

3. Let A consist of only two elements, {x, y}, and define F to be
majority rule: select y if the number of agents i for whom yPx
exceeds the number for whom xP,y and x otherwise (including
ties). This is strategy-proof because, with only two alternatives,
voting against one’s preferred alternative can lead to its losing
and cannot lead to its winning.

4. LetA = {x, vy, z} and let the set of admissible-preference order-
ings consist of two orderings: O = {(xzy), (yzx)}. The nota-
tion (xyz) stands for the ordering xP;z, xP;y, and zP;y. If the

This is the revelation principle in its original and simplest form.

3 . .
[f_ more than one element.of B is maximal. then the max operator uses an arbitrary rule to
pick one element from among the set of maximal elements.
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feasible set is the full set A, define Fto be majority rule as before
except that z is selected in the case of a tie between x and y. If the
feasible set is just two elements, define Fto be majority rule asin
the previous example. This, too, is a strategy-proof mechanism
because, with {} restricted to two elements, the addition of the
third alternative z changes nothing essential.

“The first two of these mechanisms are unsatisfactory because they do not
give sufficient scope for each agent’s preferences to affect the choice. The
second two mechanisms are unsatisfactory because they only apply to
restricted situations: two alternatives in the case of (3) and a severely
restricted set of admissible preferences in the case of 4).

Therefore the real question is: Do strategy-proof mechanisms exist
that can accommodate any size feasible set, give agents’ preferences an
opportunity to affect the group’s choice, and apply to a broad class of
preference profiles? These three requirements are easily formalized. The
firstis simple: feasible sets of three or more elements should be admissible.
Second, a mechanism should give agents influence over the outcome at
least to the extent of satisfying the unanimity requirement of the Pareto
principle and being nondictatorial. A mechanism F satisfies the Pareto
criterion if, for any set B e P(A), for any profile P ¢ (", and for any
x, y € B, xPy for all i e I implies F(P, B) # y. It is sirongly nondicta-
torial if no agent i exists such that, for at least one feasible set B € P(A)
(|B| = 2), F(P, B) = maxz(P;) for all P e (. Finally, let £_. be the
set of all possible complete and transitive orderings that are defined on
the conceivable set A. A somewhat narrower, but still very broad set is
the set of all possible complete and transitive orderings that are strict; that
is, indifference is exciuded. We denote this set by . Therefore, for a
mechanism F to be maximally flexible and applicable, setting {) equal to
gither ¥ _or X is desirable.

This set of requirements is impossible to meet. Gibbard [1973] and
Satterthwaite [1973, 1975] showed this basic impossibility result.

Theorem 2.1 (Gibbard—Satterthwaite theorem): If |A| = 3 and prefer-
ences are unrestricted (Q = - or Z), then an allocation mechanism F can
not simultaneously be strategy-proof and satisfy both the Pareto criterion
and strong nondictatorship.

Feldman [1979] has devised a simple proof of the theorem for the special
case of three alternatives, two agents, and domain 3%. We present his
proof here because its construction yields insight into how the conditions
of Theorem 2.1 may be modified in order to obtain possibility results.
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Table 1. Restrictions on F(-, A) imposed by the Pareto criterion

Agent 2

1 2 3 4 5 6
Agent 1 (xyz) (xzy) (yxz) (yzx) (zxy) (zyx)
1 (xyz) x x #28 #7° #y? 7
2 (xzv) x x #3 78 #y! #y°
3 (yxz) #2z #z ¥y y 712 £x°
4 (yzx) #z ? y y £yl £x10
5 (zxy) #y #y ? #x z z
0 (zyx) ? #y #x #x z z

The proof is this. The mechanism Fis defined for the set A = {x, y, z}
and on the domain =2, Table 1 shows the restrictions that the the Pareto
criterion imposes on F when the feasible set is A. For example, if agent

1 has preferences (xyz) and agent 2 has preferences (zxy), then F cannot.

select y, because to do so would violate the Pareto criterion. Note that,
because F is strategy-proof and thus induces truthful revelation, we need
not make a distinction between reported preferences and true prefer-
ences. If both report (xyz), then the Pareto criterion requires selection of
x. An entry that is a “?” indicates that the Pareto criterion places
no restrictions on which alternative is selected.

The mechanism F is single-valued. Therefore a single element of A
must be assigned to each cell that does not have a determinate element.
Suppose element x is assigned to the cell labeled 1 (as indicated by the
superseript 1). This violates neither the proposition nor the Pareto
criterion. This assignment, however, implies that agent 1 is a dictator
when the feasible set is A. We see this as follows.

Assigning x to cell 1 implies that x must be assigned to cell 2. Suppose
to the contrary that the only other possibility, z, were assigned to cell 2.
Agent 1 would then have an incentive to manipulate profile [(xyz), (zxy)]
by reporting (xzy) instead of (xyz). That would give him the preferred
outcome of x rather than z. Therefore x must be assigned to cell 1,
because to assign z to it would be to violate strategy-proofness. This same
logic can be used to fill every indeterminate cell on Table 1. _

Table 2 reports this logic for all cells above the diagonal. Consider as
an example the assignment of y to cel} 11. Since the proposition rules x out
as a possibility for cell 11, the only alternative outcome that could have
been assigned to it is z. If, however, z were assigned, then agent 2 could
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Table 2. Details of Feldman’s proof

Assigned Alternative Manip. Manip. Manip. Manip.

Cell outcome outcome situation agent  strategy  outcome

2 X z F(1,5) =z one  F(2,5) = X

3 X z F2,5) =x two  F{(2,6) = z

4 x yorz Fl,6)=yorz one F2,6)= X

5 x y F(1,6) = x two  F(1,4) = y

6 X ¥ Fi,6)=x two  F(1,3) = y

7 x ¥ F(2,3)=y one F(1,3) = x

8 x yorz F2,)=yorz one F1,4)= X

9 y z F(3,6) =z one F(2,6) = x
10 ¥y z F4,6) = z one  F(3,6) = ¥
11 ¥ z F4,6)=y two  F{4,5) = z
12 ¥ Xorz F3,5)=xorz one °‘F4,5) = ¥

manipulate F at the profile [(yzx), (zyx)] = (4, 6) by playing the manipu-
lative strategy (zxy):

{Fl(yzx), (zxy), A] = z} P, {F[(yzx), (zyx), A] = y}.  (2.06) . .

In the notation of Table 2, where each of the six orderings of A are
assigned an integer label, (2.06) becomes

{F(4, 5) = z} P, {F(4, 6) = y}. (2.07)

The assignment of outcome y to F[(yzx), (zyx), A] was made on the
previous line of Table 2. Therefore z cannot be assigned to cell 11, which
leaves y as the sole possibility,

Filling in each indeterminate cell in this manner, both above and below
the diagonal, results in agent 1 being a dictator for F(-, A) and there-
fore completes Feldman’s proof. If, at the beginning, for cell 1 we had
assigned alternative—z-instead of alternative x, then agent 2 would have
ended up as F’s dictator,

Comment: Theorem 2.1 is a negative result. The remainder of this chap-
ter is concerned almost exclusively with how Theorem 2.1’s conditions
can be relaxed in order to obtain existence of a strategy-proof mechanism
rather than nonexistence. Examination of the theorem’s conditions shows
immediately that only one condition — the assumption of unrestricted
preferences — can sensibly be relaxed. Nondictatorship and the Pareto
criterion are minimal conditions on how power should be distributed
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among the agents. If anything, they should be strengthened, not weak-
ened. The definition of a voting mechanism cannot be relaxed in any
obvious way.* The number of alternatives that the mechanism can handle
certainly must be maintained at three or more.

Theorem 2.1 applies only when preferences are unrestricted; that 1s,
Q = =. Within Feldman’s proof if admissible preferences are restricted
by, for example, excluding the ordering (zyx) from (, then the rightmost
column and the bottom row are struck from Table 1 because the mecha-
nism would not have to be defined for profiles that involve the ordering
(zyx). But striking column 6 affects the construction of Table 2. Our
demonstration that cell 11 must be filled with alternative y depended on
cell 10, which is in column 6, being filled with alternative y in the proof’s
previous step. Column 6’s presence is essential for this argument. If
enough rows and columns are struck, then the chain of inference that
we constructed in Table 2 may break causing existence rather than
nonexistence.

Relationship with Arrow’s impossibility theorem

Strategy-proof ailocation mechanisms are intimately related to the social
welfare functions about which Arrow {1963] proved his famous impossibil-
ity theorem. In order to understand the conditions under which reason-
able strategy-proof mechanisms exist, one must understand the basics of
this relationship. A social welfare function for A is a single-valued func-
tion f that maps the set Q" of admissible preference profiles into the set
= (or ) of transitive orderings of A. Thus f: " — Z. In other words,
a social welfare function orders the set A, presumably from best to
worst. Associated with every social welfare function f is an allocation
mechanism: Fe(P, B) = maxs(f(P)]. If an allocdtion mechanism F has

* We have defined an allocation mechanism to be a single-valued function. This definition
may appear to be a eandidate for relaxation. For example. an allocation mechanism could
be permitted to select as its output probability mixtures of two or more atiocations that are
contained in B, the set of feasible allocations. This relaxatior is an illusion. however,
because A, the set of conceivable outcomes. should be defined for such an allocation
mechanism as all possible probability mixtures of the conceivable allocations. not simply
as the set of conceivable allocations. Once this is done. then the allocation mechanism is
again single valucd and, unless preterences over this sct of probability distributions are
restricted. Theorem 2.1 continues to apply. For example. the assumption that cach agent
evaluates probability mixtures in accordance with a von Neumann—Morgenstern utility
function is a strong restriction on agents’ preferences. Two examples of papers that
explore the consequences of permitting probability mixtures to be outcomes are Barbera
[1977] and Gibbard [1978].

Strategy-proofness 141

associated with it a social welfare function, then Fis a rational allocation
mechanism. Such a mechanism F; earns this title because it selects that
element of B that the social welfare function f ranks highest. Clearly not
every allocation mechanism is rational.

Arrow investigated the existence of social welfare functions f whose
associated rational allocation mechanisms F satisfy the Pareto criterion,
weak nondictatorship, and two additional conditions, independence of
irrelevant alternatives and monotonicity. A mechanism F satisfies weak
nondictatorship if no agent [ e I exists such that, for all feasible sets
B e P(A), F(P, B) = maxg(P)) for all P e Q". Contrast this with strong
dictatorship, where an individual is classified a dictator if he is dictator
over even a single feasible set B ({B| = 2) while here he is classified a
dictator only if he is dictator over every feasible set.

A mechanism satisfies independence of irrelevant alternatives (I1A) if
whenever any two profiles, P, Q € ", agree onthe feasible set B € P(A),
then F¢(P, B) = F{(Q, B). Profiles P and Q agree on Bif, for all agents i
and for all pairs of allocations (x, y) e B X B, xPy if and only if xQ,y.
Independence means that agents’ preferences over the feasible set should
be the only determinant of the group’s choice; preferences over the
feasible set’s complement should be irrelevent.

To define monotonicity, let B e P(A) be a feasible set, letx € Bbe an

allocation within the feasible set, and let C = B — x be the feasible set : =

less the element x. The mechanism satisfies monotonicity if whenever (i)
two profiles P, O € (1" agree on Cand (ii) xP;y implies xQ;y forally € C,
then Fy(P, B) = x implies F{Q, B) = x. Monotonicity means that if
one or more agents move a feasible allocation x up in their preference
orderings relative to other feasible allocations, then that cannot cause x to
be dropped as the group’s choice. Rational choice on the part of individu-
als obeys both of these conditions and as such they are reasonable
requirements to place on group choice.’

Exactly as in Theorem 2.1, Arrow’s conditions are impossible to meet
when A contains at least three elements and preferences are unrestricted.

Theorem 2.2 (Arrow’s theorem): If |Al = 3 and preferences are un-
restricted ({3 = Z_or Z), then a social welfare function f and its asso-
ciated allocation mechanism F; cannot simultaneously satisfy the Pareto
criterion, weak nondictatorship, independence of irrelevant alternatives,
and monotonicity.

* Blin and Satterthwaite [1978] discuss the parallels that exist between an individual's
choices and a group's choices.
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Saocial welfare functions that satisfy Arrow’s requirements are inextri-
cably intertwined with strategy-proof allocation mechanisms. If prefer-
ences are unrestricted and a social welfare function with its associated
allocation mechanism satisfy I1A and monotonicity, then the mechanism
is strategy-proof.® This permits Theorem 2.2 (Arrow) to be proved
directly from Theorem 2.1 (Gibbard—Satterthwaite). Specifically, for
the case of |4} 2 3 and unrestricted preferences, suppose that — contrary
to Arrow’s theorem — a social welfare function exists that satisfies the
Paretocriterion, nondictatorship, independence of irrelevant alternatives,
and monotonicity. Then the associated rational allocation mechanism is
strategy-proof. This is impossible, however, because no strategy-proof
allocation mechanism (whether rational or not) exists that satisfies the
Pareto criterion and nondictatorship for the case of |A] = 3 and unre-
stricted preferences. Therefore Arrow’s theorem is true.

In the opposite direction, if preferences are unrestricted and an alloca-
tion mechanism is rational and strategy-proof, then it also satisfies inde-
pendence of irrelevant alternatives and monotonicity.” This result to-
gether with Arrow’s theorem can be used to show directly that, for the
case of |4| = 3 and unrestricted preferences, no rational, strategy-proof
allocation mechanism exists that satisfies the Pareto criterion and weak
nondictatorship. This nonexistence result concerning rational, weakly
nondictatorial, strategy-proof allocation mechanisms generalizes with
some effort to Theorem 2.1, which applies to both rational and non-
rational mechanisms and to strong nondictatorship as well as weak
nondictatorship.®

3 Sufficiently restricted domains and strategy-proofness

Within the general theme of restricting the domait of admissible prefer-
ences, three approaches have been followed in trying to resolve the

* Blin and Satterthwaite [1978], Th. 2, stated this result for the case of unrestricted
preferences.

? This result is stated in exactly this form in Blin and Satterthwaite [1978]. Th. 4. Its
forebears include Satterthwaite {1975]. Lemma 8, an intermediate result of Gibbard
[1973], and Pattanaik [1973], Th. 2.

" See Blin and Satterthwaite [1978] Th. 5. That particular proof was based on a proof of
Schmeidler and Sonnenschein [1978]. which in turn had been based on Gibbard's [1973]
original proof of Theorem 1.1. Al three of these proofs of Theorem 2.1 have the common
feature of using Arrow’s theorem to create a contradiction. Satterthwaite's [1973, 1975]
original proof of Theorem 2.1 and a second proof of Schmeidler and Sonnenschein [1978]
are constructive and do not use Arrow’s theorem. Thus the discussion of using Theorem
2.1 to prove Arrow's theorem is not empty.
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fundamental problem that Theorem 2.1 poses for the construction of
strategy-proof mechanisms. The first approach begins with a specific
allocation mechanism (e.g., majority rule) and searches for domain
restrictions that are sufficient to make the mechanism strategy-proof.”
We do not explore this approach in this chapter, because it is the least
general of the three approaches. The second approach begins with a fixed
restricted domain, expressed in terms of economic restrictions such as
convexity, continuity, and the like, and then looks for nondictatorial
strategy-proof mechanisms. We discuss this approach in Section 4. The
third approach, which is the most general, fixes neither the domain nor
the aggregation rule. It looks for necessary and sufficient conditions on
preferences such that the resulting domain, £, permits construction of a
strategy-proof mechanism that satisfies the Pareto criterion and nondic-
tatorship plus, in some cases, additional criteria on the distribution of
power. This is the approach we explore in this section.

In the previous section we discussed the relationship between rational,
strategy-proof allocation mechanisms and social welfare functions that
satisfy the conditions of monotonicity and ITA. This relationship is inten-
sively exploited in this section; with one exception all the results pre-
sented apply exclusively to rational allocation mechanisms. Thus the
typical result for this section is this: if (1 satisfies the following conditions,

then  admits the construction of a weakly nondictatorial and rational ., ..

strategy-proof allocation mechanism. This technique, however, is not
costless. We discuss the rationality condition in greater depth at the end
of this section and show an example of a domain that (i) permits construc-
tion of a nonrational, strongly nondictatorial, strategy-proof allocation
mechanism and (ii) does not permit construction of a rational, weakly
nondictatorial social welfare function. Thus, requiring rationality, as this
section does, creates a binding constraint. To what extent the results of
this section can be generalized if the rationality constraint were dropped
is an open question.

Characterization of the domains that admit rational strategy-proof
mechanisms requires some notation whose purpose is to allow the struc-
ture of a given domain, £}, to be examined. The set of ordered triples
within a domain € is defined as #€) = {(xyz)l P € ) exists such that
xPyPz}. Two domains (0 and £}, are equivalent if they share the same set
of ordered triples; that is, ) = #(£;). Two domains may be disjoint

9 See. for example, Sen and Pattanaik [1969]. Their paper does not deal explicitly with
strategy-proofness; rather it deals with the transitivity of majority ruje. But, as the results
of Section 3 show. if a mechanism is transitive and satisties IJA as majority rule does over
appropriately restricted domains, then it is also strategy-proof.
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and equivalent. For example, if Q; = {(xyzw).(yxwz)}, £} = {(xywz),
(yxzwl. the () = () = {(xyz), (yxz), (xyw), (yxw), (xzw), (xwz),
(yzw), (ywz)}. The importance of the equivalence relation that #(£2)
defines on theset of possible domains is thatif two domains are equivalent,
then the first domain permits construction of a strategy-proof, nondicta-
torial, rational mechanism if and only if the second domain permits
construction of such a mechanism.

The set of ordered pairs within  is T(Q)) = {{xy) e A X A | x # y}.
The set of trivial ordered pairs within Qis TR(}) = {(xy) | a P e Q exists
such that xPy and no @ e {}exists such that yQx}. A trivial pair is a pair of
alternatives over which no controversy exists because every agent, no
matter what element of () describes his preferences, agrees on how those
two alternatives should be ranked.

Decisiveness implications

The concept of decisiveness implications is of great importance because it
constitutes the technology that has made the statements and proofs of the
theorems presented in this section possible. This technology is inextrica-
bly bound up with the rationality requirement that we have imposed for
this entire section; decisiveness implications do not work for nonrational
mechanisms. The thrust behind this technology may be summarized as
follows.

Given a rational mechanism F, the members of J are said to be decisive
for a over b if a is selected when the feasible set is {, »} and the members
of J report preferences that rank a over b. Formally, J is decisive over the
ordered pair (ab) if F(P, {a, b}) = a for all P e {}" such that, for all
i eJ, aPpb. In terms of social welfare functions, decigiveness means that
coalition J can force a social preference for a over 5. A dictator is decisive
over all pairs in A because, no matter what other agents vote, he secures
the outcome he desires.

Suppose a rational, strategy-proof mechanism F that satisfies the
Pareto criterion is defined on a domain £}, Because Fis rational, a social
welfare function fr that satisfies the Pareto criterion underlies F. Be-
cause the mechanism is strategy-proof, both Fand f¢satisfy monotonicity
and I1A.'" Now suppose that a coalitionJ C [is decisive for an alternative

'Y For a rational mechanism F defined on some (2, strategy-proofness is equivalent to
monotonicity and ILA. This may be seen in two steps. For the first step, suppose voter
can manipulate Fat profile P and feasible set B by playing ;. There then exists a pair of
alternatives, x and y, such that x = FP, B), y = F(P/Q,, B), and yFx. This means,
because F is rational and has a social weifare function f,. underlying it, xf{P)y and
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a e A against another alternative b € A. Suppose additionally that an
alternative ¢ € A exists such that the ordered triples (abc) and (bca) are in
t(§2); that is, {abc), (bca) € 1(}). Let the coalition J vote (abc) while its
complement votes (bca). In other words, the reported profile P has the
property that aP:bP,c for all i e J and bP;cPa for all i ¢ J. Since J is
decisive over (ab), a is socially preferred to 5. Application of the Pareto
criterion implies that b is socially preferred to ¢ and, as a consequence of
transitivity, a is socially preferred to c. Coalition J is therefore decisive for
a over ¢ because (i) ¢ = maxy ofr(P) = F(P,{a, c}) and (ii) fr's
monotonicity and I1A together imply that no matter how members of /’s
complement change their votes, the outcome is fixed at a. Therefore, we
can conclude, if {abc) and (bca) are in #{2), then any individual or
coalition that is decisive over (ab) is necessarily decisive over (ac) as well.
This is decisiveness implication number 1. Note the central role that
transitivity (i.e., rationality) played in its derivation. Our use of the labels
a, b, and ¢ here for the elements of A is to emphasize that the implication
applies to any ordered triple; for example, in a particular application a
may be assigned the value y, b the value 2z, and ¢ the value x.

Parallel arguments lead to decisiveness implications numbers (ii)
through (iv): (ii) if (abc), (bea) e t(£2) and a coalition J is decisive over
(ca), then J is necessarily decisive over (ba); (iii) if (abc) € 1Y), (bca)
¢ t(Q)), and a coalition J is decisive over (ab) and (bc), then J is also de-
cisive over {ac); (iv) if (abc) e {Q), (bca) ¢ £((Q), and a coalition J is
decisive over (ca), then J is decisive over either (ba) or (cb). Table 3
summarizes these.

Consider a domain £} of admissible preferences and a set of ordered
pairs R C T. The question is this: Does a rational, strategy-proof mech-
anism, F, satisfying the Pareto criterion exist such that some coalition J is
decisive over exactly the set of pairs contained in R? The answer is that,
for such a mechanism, the set R can be the collection of pairs over which
coalition J is decisive only if R is closed with respect to the four decisive-
ness implications. The set R is closed with respect to the decisiveness
implications if for every {(ab) £ R, then, given (@ and R, none of the
decisiveness implications implies that J must be decisive over (ab). The

yfAP/Q)x. If yQ;x then fr violates [TA. If x@y then f is nonmonotonic since, when

agent { changes his reported preference from yP.x to x(Q;y, the social ordering changes
perversely for xf(P)y to yf(P/Q;)x. This proves that strategy-proofness implies mono-
tonicity and I1A. For the second step, study the violation of ILA and the violation of
monotonicity that are set up in the first step. Inspection shows that if either occurs, then
agent i can manipulate F. Therefore, for rational mechanisms, monotonicity and
IIA imply strategy-proofness. Blin and Satterthwaite [1978], Th. 2, and Blair and

Muller [1983] stated this result for unrestricted preferences and restricted preferences,
respectively.
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Table 3. Decisiveness implications

Domain conditions Implication Name
i be) e ({2 (bca) € 1(£) (ca) (ba) D%rect branch
;i Ezbz; z rEﬂ; {bca) € 1(£2) {ab) (ac) Direct branch
i (abo)e @) (bea) £ KO) E‘;i; (ac)  Joining branch
(ba)

iv {abc) e 1(£}) (bea) ¢ HQ) (ca) (ch) Splitting branch

i i inition i i be decisive over
idea underlying the definition is that if J can be shown to :

the pair (ab), then by definition (ab) belongs to R alrea_dy. The domain O
is decomposable if such a closed set R exists thatisa strict §ubset of t_he set
of all pairs and is a strict superset of the set of trivial pairs. Thus if  is

decomposable, then TR({) gR gT.

Nondictatorial strategy-proof mechanisms

Kalai and Muller [1977] used the concept of decomposability to character-
ize the domains on which nondictatorial strategy-proof mechanisms can

be constructed.

Theorem 3.1: For n = 2 an n-person, weakly nondictatorial, rational,
strategy-proof mechanism on Q C 2 exists if and uonly. if a two-person,
weakly nondictatorial, rational, strategy-proof mechanism on Q exists.

Theorem 3.2: For n = 2, the following three statements are equivalent for
every £).
a. § el is decomposable. ‘
b. The equivalence class of Q permits construction of an n-person
weakly nondictatorial, rational, strategy-proof mechanism that

satisfies the Pareto criterion. '
¢. The equivalence class of Q@ permits construction of an n-person

weakly nondictatorial social welfare function that satisfies the
Pareto criterion and I1A.

Consider, for simplicity, the two-agent case (n =_2). Tk}e necessity
that € be decomposable for construction of a nondictatorial strategy-
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proof mechanism follows directly from the observation that if the only set
of pairs R that is closed and nontrivial is the set, T, of all ordered pairs,
then one agent must be a dictator. Suppose, contrary to the observation,
neither agent is a dictator and their orderings in the profile P disagree on
the nontrivial pair {x, y}. Since F(P, {x, y}) is single valued, one agent or
the other must get his way and is thus decisive on the pair. But if he is
decisive over one pair, he is decisive on all pairs because the only closed
nontrivial R is identical to T. Therefore the agent is a dictator.

As for the sufficiency of decomposability, if a closed set of ordered
pairs R, g T exists, define R, as the set of ordered pairs whose inverses
are not in R,. With this we eliminate the risk of an agent being decisive
over a pair (ab} while another agent is decisive over the inverse pair (ba).
Define the following social welfare function. Let agent 1 be decisive over
the pairs in R,. Let agent 2 be decisive over the pairs in R,. Let the
coalition of agents 1 and 2 be decisive over all pairs. i there are more
agents, let them be dummies who have no effect on the outcome. It can be
shown that this function is a weakly nondictatorial social welfare function
satisfying the Pareto criterion and IIA and that it underlies a nondicta-
torial, strategy-proof mechanism. That this mechanism may be only
weakly nondictatorial foliows from the fact that — in the sense of strong
dictatorship — agent 1 is a dictator whenever the feasible set is a pair of
alternatives, {a, b}, € P(A), for which (ab), (ba)e R;. Agent 1 is
then decisive over both (ab) and (ba); consequently F(P, {a, b}) =
max{a_b}PI.

The statement of parts (b) and (c) of the equivalence in Theorem 3.2
has a surprising feature. It would have been more intuitive, simpler to
prove, and more consistent with the other theorems reported in this
section to state in (c) that the social welfare function, f, satisfies the
Pareto criterion, IIA, and monotonicity. In the theorem, however,
monotonicity is not assumed and thus cannot be used. Instead when
existence of a strategy-proof mechanism is to be established given that a
nondictatorial n-person social welfare function exists, Theorem 3.1 im-
plies the existence of a two-person nondictatorial social welfare function.
Observe that a two-person social welfare function satisfying the Pareto
criterion is necessarily monotonic and thus the two-person allocation
mechanism that it underlies is strategy-proof. To construct the n-agent,
nondictatorial, strategy-proof mechanism, which is the goal of the exer-
cise, add the remaining n — 2 agents as dummies.

The generalization of Theorem 3.1 for allocation mechanisms that are
not rational has been proven by Kim and Roush [1981]. To our knowl-
edge this is the only result of this section that has been generalized from
the rational case to the nonrational case.
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(xy) = (zy) w2 {zx)
4 I

(xz) = 2) e (¥x)

Figure 1. O, = Z {xyz, yzx, zxy, zyx, yxz, Xzy}.

Graphic representation

The graph'! that the decisiveness implications create among the ele-
ments of the set of all pairs helps understand the decomposability condi-
tion. As a first step, consider Feldman’s proof of Theorem 2.1, which we
presented in Section 2, for the special case of two agents and three
alternatives. Here we use decisiveness implications to create an analo-
gous proof for a somewhat weaker result: for three alternatives and two
agents every strategy-proof, rational mechanism that satisfies the Pareto
criterion is dictatorial. The result is weaker because this section’s tech-
nique only applies to rational mechanisms; Feldman’s technique applies
to both rational and nonrational mechanisms.

The domain, {); = Z, consists of all six strict orderings that are pos-
sible when the number of alternatives is three. In Figure 1 the nodes of the
graph consist of all the ordered pairs T. The directed branches represent
application of decisiveness implications (i) and (ii) to each of the six
orderings. For example, if agent 1 is decisive over a pair (xy) and, as is the
case, (xyz), (yzx) e (1, then decisiveness implication (ii) implies that he
has to be decisive over (xz) as well. Thus a directed branch connects (xv)
to (xz) because (xyz), (yzx) € (),. This follows from the first decisiveness
implication if x is assigned to &, y to b, and z to ¢. Similarly, decisiveness
implication (i) implies that a directed branch connects (xy) to (zy) be-
cause (yzx), (zxy) e £;. If all branches are filled in, the graph in Figure 1
results. It is evident that the direct branches generated by decisiveness
implications (i) and (ii} span the whole set of pairs. No sinks (i.e., closed
sets of ordered pairs that are strict subsets of T} exist there. A set R is
identified graphically to be a sink if branches only go into it while none
come out of it. Agent 1 is therefore necessarily decisive over all six pairs
and is a dictator.

A slightly different way to see that one agent must be a dictator is to
replicate for rational mechanisms the several steps of Feldman’s proof
(see Section 2) that led to the conclusion that if alternative x is assigned to
cell 1, then agent 1 is necessarily a dictator. Assignment of x to cell 1
means that we resolve in favor of agent 1 the conflict over the pair {x, z}

"' Muller [1982] developed this graphic analysis.
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(xy) =2 (zy) “— (zx)
(xz) - (vz) &2 (vx)

Figure 2. O, = E — {zyx} = {xyz, yzx, zxy, yxz, xzy}.

that occurs when agent 1 votes (xzy) and agent 2 votes (zxy). The Pareto
criterion eliminates alternative y as a possible outcome. Thus that assign-
ment makes voter 1 decisive over (xz). It also implies that x must be
assigned to cells 2 and 3 because agent 1 is decisive over (xz) and the
Pareto criterion eliminates y from consideration. In cell 4 agent 1's
decisiveness over (xz) eliminates z as a possible outcome. If x is assigned
toa, zto b, and y to ¢, then decisiveness implication (i) states that agent 1
is decisive over (xy) because he is decisive over (xz). This process may be
continued until all cells are assigned agent 1’s preferred choice.

It we delete one ordering out of 2, then a number of sinks result, which
means that the resulting {} is decomposable and, according to Theorem
3.2, a rational, nondictatorial, strategy-proof allocation mechanism can
be constructed on €. To be specific, let (zyx) be deleted from X and call
the resulting domain ). Figure 2 shows its graph. It differs from Figure
as follows. The two direct branches from (yx) to (zx) and from (xz) to (xy)
that decisiveness implications (i) and (ji) respectively would generate if
(zyx) were an element of ), are deleted. But because (xzy) € 2, and
(zyx) ¢ ), both a joining branch and a splitting branch are eligible to be
added. Decisiveness implication (iii} generates the joining branch; it
connects both (xz) and (zy) to (xy) and means that if R contains both (xz)
and (zy), then it must also contain (xy). It is not drawn because the
decisiveness implication (zy) — (xy) makes this joining branch redun-
dant. Decisiveness implication (iv) generates the splitting branch; it con-
nects (yx) to both (zx) and (yz) and means that if R contains (yx), then it
must also contain either (zx) or (yz). It, too, is not shown because it is
redundant. Note, however, that if in addition (yzx) were dropped as an
element of (1,, then neither the joining nor the splitting branch would be
redundant.

These changes cause Figure 2 to have four sinks: Ry = {(x2)}, R, =
{(29), (12), (), Rs = {(x2), (2), (92}, and Ry = Ry U Ry = T -
{zx). Associated with each sink is a distinct, weakly nondictatorial,
strategy-proof mechanism. Therefore four distinct, strategy-proof, non-
dictatorial, rational mechanisms can be constructed on the domain ),.
Note that R, includes (xy) and its inverse (yx) and (yz) and its inverse
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(zy); this means the mechanism that is associated with it is not strongly
nondictatorial because whenever B = {x, y} or {z, y} the agent who is
decisive over the elements of R, dictates the choice. A similar argurnent
applies for Ry, but not for R, or R;. Thus if [4] = 3, the deletion of a
single ordering form X is sufficient to reverse the Theorem 2.1°s impos-
sibility result,

Essentiality and symmetry

In the discussion that followed Theorems 3.1 and 3.2 we described how to
construct a nondictatorial, strategy-proof mechanism when Q is decom-
posable. That mechanism, however, distributes power with unacceptable
unevenness: n — 2 of the individuals are dummies. As this particular
mechanism illustrates, requiring that a mechanism satisfy nondictatorship
is a toothless requirement that comes nowhere near describing the cri-
teria by which we judge a distribution of power acceptable or not
acceptable. Nondictatorship (strong or weak) is a necessary, but not
sufficient, condition for a mechanism to be acceptable and as such is
useful within the context of impossibility theorems. Possibility theorems
need additional conditions that capture what we mean when we judge a
particular power distribution acceptable.

Two such conditions are essentiality and symmetry. For a mechanism
Fan agent/is essential if a preference profile P ¢ Q" and ordering Q, €
exist such that if agent i changes his ordering from 2; to Q;, then the
outcome changes from F(P, B) to F{(P/Q;, B) # F(P, B). A mechanism
is essential if all agents are essential. In essential mechanisms each indi-
vidual has some, though not necessarily equal, power. Symmetry, on the
other hand, mandates equal power without specifying the magnitude of
the power. A mechanism Fis symmetric (sometiraes called anonymous) if
any permutation of the individuals leaves the outcome unchanged: for all
Pe ()", BeP(A), and permutations p: {1,...,n}—{1,..., n},
F...,P,...,By=F( ..., Py, . . ., B). Neither of these con-
ditions completely supplants the strong nondictatorship conditions or the
Pareto criterion. For example, an imposed mechanism is symmetric
because under such a mechanism every individual is identical in having no
influence over the outcome.

For the case of essential mechanisms Blair and Muller [1983] have
generalized the concept of decisiveness implications and proved the
natural extension of Theorem 3.2. The example, which follows, of an
essential mechanism and the domain on which it is constructed shows that
essential mechanisms, while an improvement over weakly nondictatorial
mechanisms, only incompletely capture the considerations that enter our
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evaluations of whether a particular distribution of power is acceptable.
Let 4 = [X', ..., X*] where each x' is a vector of three alterna-
tives. The domain ) consists of all orderings in which the elements of
X* appear always above X' for all k </ and, within X*, the three
alternatives form a free triple; that is, all six orderings of the three
elements of X* are permissible. Let each voter be a dictator on at least
one of the free triples. The result is an essential monotonic social welfare
function for K or fewer voters. Any additional voters must be dummies
and are therefore not essential.

Symmetry is a more stringent condition than that of essentialit}f. It too
can be approached using the technology of decisiveness implications. A
domain Q) is transitively decomposable if a nontrivial set R exists that is (i)
closed under decisiveness implications (i) through (iv) and (ii) transitive.
Transitivity in this context means that R must satisfy: (i) if (xy), ( y'z) eR,
then (xz) ¢ R and (ii) (xy) e R if and only if (yx) ¢ R. The following two
theorems summarize the symmetric case, and are adapted from Muller
[1982]. The equivalence between the second and third parts of Theorem
3.4 are extensions that are not proven in the original paper, but can
straightforwardly be shown by means similar to those used in Blair and

Muller (1983).

Theorem 3.3: A symmetric, n-person, rational strategy-proof mechanism
on Q exists for all n = 3 if and only if a symmetric, three-person rational
strategy-proof mechanism on () exists.

Theorem 3.4: The following three statements are equivalent for every
NeX:

a. ) is transitively decomposable.

b. Forall n = 3 the equivalence class of {} permits construction of a
symmetric, monotonic, social welfare function that satisfies the
Pareto criterion and ITA.

¢. Forall n = 3 the equivalence class of (X permits construction of a
symmetric, rational, strategy-proof mechanism that salisfies the
Pareto criterion.

The social welfare function in part (b) is required to be monotonic
because, unlike in the case of Theorems 3.1 and 3.2, no theorem exi:sts
that reduces the n-person case to the two-person case. Indeed, with
respect to Theorem 3.3, an () exists for which a symmetric two-person
social welfare function may be constructed, but not a symmetric three-
person social welfare function. In parts (b) and (¢) no reference i§ n?ade to
nondictatorship, because any symmetric mechanism that satisfies the
Pareto criterion also satisfies strong nondictatorship.
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Group strategy-proofness

A mechanism is strategy-proof if no single individual ever has an incen-
tive to misrepresent his preferences. Blair and Muller (1983) have shown
the surprising result that, for rational mechanisms, strategy-proofness for
individualsisequivalenttostrategy-proofness for coalitions of individuals.
A coalitionJ, lJ| = k < n, has an incentive to manipulate the mechanism
£ at profile P and feasibie set B € P(4) if orderings Q; € Q exist such
that, for all i ¢ J,

F[P/Q, B] P.F(P, B) (3.01)

where Q = {Q}.;. A mechanism F is group strategy-proof if no ad-
missible profile P € 2", no set B, and no coalition J exists such that at
profile P coalition J can manipulate mechanism F,

The driving force behind this equivalence of group strategy-proofness
and individual strategy-proofness is the rationality condition. To show
this we first observe that if a mechanism is group strategy-proof, then by
definition it is individually strategy-proof. We then show that a rational
mechanism that is individually strategy-proof is also group strategy-proof
by demonstrating that if a mechanism is manipulable by some coalition,
then it is also manipulable by some individual within the coalition.
Therefore an individually strategy-proof mechanism must also be group
strategy-proof.

Suppose, in order to see that group manipulability implies individual
manipulability, thatagroupJ = {1, . . ., k}, k < n,can manipulate F at
profile P and feasible set B:

F(QI)°- . 5Qk= Pk+11' . >=Pn: B) PJE(Pv B)' (302)
Let F(Qi, ..., QO Prsts- .., Py B)=x and F(P, B) = y. Note
that xP;y for all i € J. The rationality of F implies that F(Q;, . . . , Oy,
Peirs oo o, Py {x, vy = x and F(P, {x, y}) = y. Therefore (3.02) con-

tinues to be true when B is replaced as the feasible set by{x, y}. Moreover,
because F(P, {x, y}) € {x, y} for all P € )", a j € J must exist such that
FQy,...,0-1.P, Py, ..., P, (x,y}) =x and oy, ...,
Q1. @ Pivas o, Py, {x, y}) = y; that is, j e J is the critical voter
who switches the outcome. Voter j, as a member of J, has preferences
x£y; therefore, he can individually manipulate Fat feasible set {x, y} and
profile (Qy, ..., Qy-y, Pj, Piers .. ., P,). Note that the rationality
requirement was what allowed us to reduce the problem to that of
selection between two alternatives.
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The private goods case

The discussion to this point has considered only a perfectly general
conceivable set, 4, that has no a priori structure imposed on it. Suppose,
however, that each alternative within A is a vector of » distinct private
goods” bundles, each one of which is to be allocated to one of the n agents.
To accommodate this change, let A represent each individual’s consump-
tion set, x; € A be the bundle of private goods agent { consumes, P; be his
preferences over A, andlet Q) C £_be the set of orderings over A to which
P;is a priori restricted. Note that indifference is permitted as indicated by
{1 being contained in Z_rather than 2. Also, note that every individual { is
selfish in that he is concerned only with his own component of the
alternative x = (x, . . ., x,).

An ailocation x = (x|, ..., x,) € A" is the n-vector of the agents’
private goods’ bundles. Redefine, for this subsection, an allocation mech-
anism to be a function F: " X P(A) — A" Thus (P, B) = [F\(P, B),
.o ., F(P, B), ..., F,(P, B)] is a vector of n functions where the ith
function, F,(P, B) e B, specifies the allocation of private goods agent i
receives.

Two new definitions must be introduced in order to characterize the
domains on which weakly nondictatorial, strategy-proof mechanisms can

be constructed. First is a strengthening of the Pareto criterion. A mecha- * *

nism F satisfies the strong Pareto criterion if, for any pair x, y € B, xPy
for at least one agent and yPx for no agent, then F(P, B) # y. This
strong version differs from the weak version in that the strong version
does not require unanimity and permits some agents to be indifferent
between x and y; that is, it may apply even if xP,y for some agents.

The second new condition is Ritz’s [1981, 1983] noncorruptibility
condition. A mechanism is noncorruptible if for all sets B € P(A), all
profiles P e ", all agents i e /, and all orderings Q, € Q, F(P, B) P;
F{P/Q;, B} implies F(P, B) = F{(P/Q;, B) for all agents j(j # i). Re-
call that P; signifies indifference. Thus, for a noncorruptible mechanism,
an agent must change the utility value of the outcome to himself in order
to affect the physical outcome of other agents. Informally, if a mechanism
is corruptible, then agent {, who may be thought of as a potential corruptor
or boss, does not directly improve his own outcome as is the case in
manipulation. Rather, he changes the value of the outcome to others. He
thus creates a possibility of indirectly improving his position by threaten-
ing other agents and demanding side payments. Thus corruptibility sets
the stage for indirect manipulation as opposed to the direct manipulation
with which strategy-proofness is concerned.




154 Eitan Muller and Mark A. Satterthwaite

Kalai and Ritz [1980] and Ritz [1981, 1983] have used the technology
of decisiveness implications and decomposability to make substantial
progress on the private goods case. The private goods decisiveness impli-
cations to which the following theorem of Ritz [1981, 1983] makes refer-

ences are not reproduced here in the interests of brevity. They may be
found in Ritz’s original papers. '

Theorem 3.5: For the private goods case, when n = 2, the following
three statements are equivalent for every

a. ) is decomposable over private alternatives.

b O permils construction of an n-person, weakly nondictatorial
}v?:al welfare function that satisfies the strong Pareto criterion and

. {} permits construction of an n-person, weakly nondictatorial,

rational, noncorruptible strategy-proof mechanism that satisfies
the strong Pareto criterion.

This Fheqrem parallels Theorem 3.2 in not requiring the social welfare
fupcthn in part (b) of the theorem to be monotonic. The reason is that
R_ltz, like Kalai and Muliler, exploited the permissiveness of the non-
dictatorship condition to construct, through the use of dummies, #-person
mechanisms from two-person mechanisms. P

Restrictiveness of the decomposability conditions

The results presented in this section succeed in characterizing for several
contexts the domains on which construction of strategy-proof mecha-
nisms is possible. The question that remains is: How restrictive are these
condmoqs? The ideal way to answer this question would be to determine

ff)r a variety of different economic environments, if the a priori restric-,
tions on agents’ preferences that those environments naturally induce
satisfy the characterizations for strategy-proof domains that have been
presented. This approach has not been successfully carried out. A second
approach, which has met with some success, is to calculate how close to
unity the ratio [€}| / [£] can be made to come when Q is restricted to admit
the construction of a nondictatorial, strategy-proof mechanism. If exam-

iz ) :
th?s theorem Is true as stated here only if (X permits an agent to have the strict
preference orderiqg (abc) over some three alternatives a, b, and ¢ contained in 4. Thisis
a very weak condition that is satisfied by any interesting ).
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ples exist in which, even with a large number of alternatives, the size of
the restricted domain is still “respectable” relative to the size of the full
domain, then that is an indication that these characterizations are not
very restrictive.

Kim and Roush [1981] have shown that if {A| = m, then

m!/Z-%-(m-l)! wl+ 1
m! 2 " m {3.03)

is the upper bound on |0] / |Z| for weakly nondictatorial, rational,
strategy-proof mechanisms satisfying the Pareto criterion. Because essen-
tial and symmetric mechanisms are also weakly nondictatorial, (3.03} is
also the upper bound for domains that permit construction of essential
(or symmetric) rational strategy-proof mechanisms. Blair and Muller
[1983], based on the work of Kalai and Ritz [1979], have constructed an
example of an essential mechanism that achieves this bound. Expression
(3.03) is thus a least lower bound for essential and weakly nondictatorial
mechanisms.

The domain, (¢ C Z, for Blair and Muller’s example is defined by a
single restriction: it contains an ordered pair, (xy) € T(£2), with the
property that no alternative z e A and ordering P; € {) exist such that
xPzP,y; that is, no z € A exists such that (xzy) e £(2}. The pair (xy) is
thus inseparable in the sense that an admissible ordering can rank x* *
immediately above y or someplace below y. Given this domain, an
essential rational mechanism is this. Let voter 1 be decisive over all
ordered pairs (ab) e T(€2) except (xy) and let each other individual have
veto power over (xy). Thus x = F(P, {x, y}) if and only if xP;y for all ‘
ie{2,3,...,n} This defines a social welfare function that, with one
exception, makes agent 1 the dictator in the sense that his ordering
becomes the social ordering. The exception occurs when agent 1 ranks x
just above y and some other agent (the vetoer) objects by ranking y above
x. In that event the social ordering is modified by placing y immediately
above x. It is straightforward to check that this defines an essential,
monotonic, weakly nondictatorial social welfare function that satisfies
the Pareto criterion and ITA. It thus also defines an essential, weakly
nondictatorial, strategy-proof, rational allocation mechanism that satisfies
the Pareto criterion. -

The size of this domain is m!/2 + (m — 1)1. This formula is easily
derived by considering that subset of Q for which xP;y separately from
that subset for which yP;x. Since m alternatives may be strongly ordered
in m! different ways, the |}| / || ratio equals the value of (3.03). The
weakness of this example is the already emphasized fact that essential
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Table 4. Nonrational, strategy-proof mechanisim

Agent |

1 I 3 4 5 6
Agent 2 {(xzyw) (yzwx) {(vxwz) {wxzy} (zwxy) (wzyx)

I (xzyw)

X ¥ x
2 (yzwx) ¥ v ;’ v ; z
3 (yxwz) ¥ ¥ y v ; y
4 {wxzy) X y y w 5 3;
5 (zwxy} z y y z z z
6 {wzyx) z y v W 2 ”

mechanisms may incorporate an unacceptable distribution of power
among the participating individuals. In this particular example that is
sure}y the case, because agent 1 is nearly a dictator. Therefore this
particular example is not convincing as evidence that the decomposability
conditions are relatively unrestrictive.

Examples for the symmetric case, which might be more convincing
have not been constructed yet. Kim and Roush (1981) showed that ixl
mechanisms that give agents veto power are excluded from consideration
then_tht? 1 / 1Z] ratio goes to zero as m goes to infinity, This is no;
convincing evidence in the opposite direction, however, because, since
symmetric mechanisms with veto power may be constructed, no co’mpel-
ling reason to prohibit the use of the veto is apparent,

The rationality requirement

Througl_l_out this section we have only considered rational allocation
mechanisms. This is not a benign requirement. If the rationality condition
is dropped, then the opportunities for constructing strategy-proof mecha-
nisms mcrease. This point is made most concretely by an example due to
Maskin [1976]. His example identifies a domain, Q, that has two impor-
tant properties: (i) a strategy-proof, strongly nondictatorial mechanism
satllsfymg the Pareto criterion exists on it and (ii) no weakly nondictatorial
social weltare function satisfying the Pareto criterion and IIA exists onit.

' We present in this subsection a corrected and much simplified ver-
sion of Maskin’s example. Let () = {(xzyw), (yzwx), (yxwz), (wxzy)
(zwxy), (wzyx)}. Denote these six admissible orderings by ,P- H =

s+« -, 0, according to the order they appear in Q. It is straightfgrward
to check that the mechanism defined in Table 4 is strategy-proof when
the feasible set consists of all four alternatives in 4 = w, x, y, z}.
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The nonrationality of F means that, for cach of the four feasible sets B
containing three of the four alternatives in A ({x, v, z}, {w, x. v}, etc.),
the mechanism F(-, B) may be defined without reference to the way
Table 4 defines it for the case where A is the feasible set. Inspection of the
orderings contained within {2 shows that if one alternative is eliminated
from each of its constituent orderings, then five (out of the six possible)
distinct orderings of the three remaining alternatives are left. For ex-
ample, if B = {x, y, z}, then the domain that results by striking w from
each ordering in {} is

Quey.ar = {x2y), (vx2), (vzx), (2xy}, (2yx)} = £ = (xy2). (3.04)

Earlier in this section we showed that, when |4| = 3, elimination of one
ordering from X is sufficient to permit construction of a strongly non-
dictatorial, rational mechanism on that feasible set. Define F(-, B) to be
one of those mechanisms whenever |B| = 3 or |B} = 2. The result is a
nonrational, strongly nondictatorial strategy-proof mechanism that satis-
fies the Pareto criterion.

To complete the example, we have to show that this domain does not
permit construction of a weakly nondictatorial social welfare function
that satisfies the Pareto criterion and I1A. This is easily done by construct-
ing the graph of  to arrive at Figure 3. Since that graph does not contain

any sink, Theorem 3.2 implies that a weakly nondictatorial social welfare * =

function does not exist on Q.

This example shows that the upper bounds on the | / |2} ratio that
Kim and Roush [1981} derived for rational mechanisms do not necessarily
hold for nonrational mechanisms. This emphasizes that our knowledge is
quite imperfect concerning the degree to which the admissible domain
must be restricted in order to permit construction of a reasonable strategy-
proof mechanism.

4 Strategy-proofness on specific restricted domains

The last section reported on work that has been done to characterize
those domains of preferences that are restrictive enough to permit the
construction of strategy-proof allocation mechanisms that share power
among a group’s members in some acceptably democratic way. Consider-
able progress has been made on this approach, but as yet no researcher
has succeeded in relating those characterizations to the domains of admis-
sible preferences that occur in economic situations. This section reports
on work that has taken the less general approach of beginning with a
domain where preferences are restricted to belong to a class that naturally
arise in economic environments and then characterizing the strategy-
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proof allocation mechanisms that can be constructed on that domain. In

other words, the methodology of the last section is turned on its head

hgre. Instead of beginning with properties that a strategy-proof mecha-
nism should possess and deriving those domains that are consistent with
those properties, we begin with a domain and derive the properties of the
mechanisms that are consistent with that domain.

_ Economists often represent bundles of commodities as points in Eu-
c-lldean space. Therefore, in this section where we are concerned exclu-
snyely with economic environments, A is no longer a set of discrete points
w?thout structure. Instead an alternative x = (x,, . . . . X1} is a point
within a consumption set A that is itself a subsct of l-dimensional Euclid-
ean space. The interpretation of x,, the kth component of x, is that the
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bundle x contains x; units of good k. Imposition of this Euclidean
structure on A enables us to utilize the concepts of continuity and
differentiability. Specifically, given this structure on A, a natural restric-
tion to place on the admissible preferences of agents is that they be
representable by twice differentiable, strictly concave utility functions,
u{x), that are increasing with respect to each of their arguments.

Clearly such a restriction on (), the set of admissible preferences, is
strong. Its strength can be seen by letting / = 2 and considering a se-
quence of ten points {x', . . . , x'} that are randomly selected from a
convex consumption set A that has a nonempty interior. The probability
that the ordering (x', x%, - - + x'%) is consistent with Q is miniscule —
certainly less than 0.5. It therefore is in some sense a stronger restriction
than some of the restrictions on preferences identified in Section 3.
Recall, in particular, Blair and Muller’s [1983] example of a domain O
that (i) contains more than half the possible orderings that can be defined
on A and (ii} admits the construction of a rational, weakly nondicta-
torial, strategy-proof mechanism satisfying both essentiality and the
Pareto criterion.

In addition to restricting ourselves in this discussion to preferences
that are sufficiently smooth, we also restrict ourselves to mechanisms that
have continuous derivatives. A sensible allocation mechanism in an

economic environment cannot be everywhere. nondifferentiable. To be* =

nondifferentiable everywhere would mean that whenever an individual
agent perturbed his preferences, then the outcome would jump in a new
direction. Clearly, however, an allocation mechanism need not be smooth
everywhere; it is quite acceptable for the allocation to jump at some
points. This means that the results reported in this section should be
considered to be local characterizations of the possible strategy-proof
mechanisms. As aconsequence we do not discuss the results, forexample,
of Border and Jordan [1983], who for a very restrictive domain of ad-
missible preferences consider strategy-proof mechanisms that are non-
differentiable at isolated points.

These ideas are easily formalized provided that we change the manner
in which the agent i reports his preferences from being P;, a binary
relation on A, to u;, a real-valued utility function on A. A utility function
1, +) represents the preference ordering P; if: xPy if and only if »,(x) =
ui(y)."> Let A, the set of admissible alternatives, be a compact, convex
subset of R with nonempty interior. Redefine € to be the set of admissible

3 For a given P, many utility representations u, exist. This indeterminacy has no effect on
the results that we present in this section. because the resuits are impossibility theorems.
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utifity functions on 4. We assume that every i, e {) is twice continuously
differentiable and that Q itself is a convex subset of alinear function space
that is endowed with the €2 topology. 4

Rationality plays no role in this section. Therefore the feasible set,
B e #(A), can be fixed equal to A because, with rationality no longer an
issue, permitting B to vary serves no function. An allocation mechanism
within economic environments is therefore a function F: 0" — A. Note
that, since the feasible set is fixed, B is dropped as an argument. A
mechanism F is strategy-proof if, for all profiles u e ", all utility func-
tions u; € Q, and all agents ;, wlF(u)] = w[F(u/u)].

Let C*(A) be the set of all twice continuously differentiable functions

on A. The mechanism Fis continuously differentiable at 1 € £ if for ail
ve [CHA)),

Flu + \v) — F(u)
A (4.01)

exists, is continuous in both « and v, and has the standard property that
Doy anF(t) = cD, Flu) + dD, F(u) for all scalars ¢, d € R and all func-
tions v, w e [C*(A)]}". Note that v and w are vectors of n distinct 2
functions. This means that D, is defined in terms of all n of the agents’
utility functions being perturbed simultaneously. To represent the more
restrictive case where only one agent’s utility function is perturbed, let
(v/i) be the element of [C*A)]" that has as its ith component the function
v; € C*(A) and has as its other n — 1 components the constant function
with value zero. The derivative Dw/nF is therefore the direction within
A in which the allocation F(u) moves as the function v, perturbs agent #’s
utility function u;. Agent i affects the allocation Fu) at ue Q" if a
v; € C*(A) exists such that DyyynF(u) # 0. Agent i affects agent j’s utility
at ue " if a v;e C*(A) exists such that Diiu;[F(w)] # 0 where
D iy F(u)] represents the derivative of agent j’s utility when #’s utility
function is perturbed by v;.

DyF(u) = Tim,_,,

The simplest case

The constraints that strategy-proofness places on the design of allocation
mechanisms within economic environments are most easily seen within
the simple one-agent, two-good implementation problem (ie,n=1

" Under the C* topology two utility functions, « and u', are close to each other if at every
point within A their values are close, their vectors of first derivatives are close, and their
matrices of second derivatives are close.
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The openness of Q. coupled with its linearity and C? topology, has an
important implication: if () is open, u; € &, and ve C2, thena d>0
exists such that (u; + A) e  for all M€ [0, 8). In other words, if &
mechanism is broadly applicable, then any admissible utility function
remains an admissible utility function when it is perturbed slightly through
the addition of another C? function, Av. The logic behind the broad
applicability requirement 18 that a perturbed admissible utility function
should itself be admissible because “while preferences within an eco-
nomic environment may have considerable a priori structure such as strict
convexity, preferences are not naturally limited to any particular para-

metric form.”"
Let T{u_) = {x¢€ Alx= F(u/u}), where u. e Q}, be the choice set
of agent i Note that T; only varies with ©-; = (tys - o v Himls

Uiris - - - » Un)- A profile u e Q" is a regular point of 2 strategy-proof

mechanism F if
a. The mechanism, F, is continuously differentiable in u.
b. For all i and all u' in some neighborhood of u, [i{u_;) is
continuously differentiable in .- and is a k-dimensional, 0=
k,=I-1, smooth manifoldina neighborhood of the allocation

Flu).
c. Foralli, F(u)isthe unique and well-behaved maximizer of u; on

Li(u-s)-
A regular point therefore is a point whe
choice set that changes position smoothly a

change.
These definitions and notation allow us to state Qatterthwaite and

Sonnenschein’s {1981] public—goods-only result.

re each agent faces a smooth
s the other agents’ preferences

Theorem 4.1: If an allocation mechanism F allocates public goods only, is
strategy-proof, and is broadly applicable, then at every regular point u
¢ O an agent i exists who is a dictator at i,

A dictator within this context is an agent who selects his most preferred
point from an exogenously given set of achievable points. In other words,
an agent i is a dictator if T{u_,) is a constant as L varies.

Several comments should be made about this result. First, the result is
true only for public goods. The private goods analogue 15 discussed
subsequently. Second, the resuit is local. If agent i is a dictator in some
neighborhood of u, then a second regular point u', which is separated

15 gatterthwaite and Sonnenschein [1981], p- 391
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from u, may exist at which some different agent is the dictator. Sat-
terthwaite and Sonnenschein observe, however, that if the set of regular
points is a connected set and the mechanism, for all regular points, is
total, then a single agent i is the dictator at all the regular points. In the
public-goods-only context, a mechanism is total if at every regular point i
at least one agent affects the aliocation Flu).

Third, the theorem is stated without the Pareto criterion. Therefore
imposed mechanisms are consistent with the theorem. Animposed mech-
anism permits no individual to influence the choice of outcome; that is,
F(u) is a constant function as u varies. Thus if a mechanism is imposed at
u, then, for all agents 7, the manifold Fiu_;) is a zero-dimensional,
nonvarying point within A, which means formally that every agent is an
(inconsequential) dictator. Fourth, if a mechanism is not mmposed and
agent { is dictator at u, then for all agents j (j # i), T{u_;) is the point
within A that agent i, the dictator, selects from his exogenously given
choice set T;.

‘The most interesting step in the proof of Satterthwaite and Sonnen-
schein’s proof of Theorem 4.1 is contained in their Lemma 2. That [emma
in the public-goods-only case is this: If at a regular point u of a broadly
applicable and strategy-proof mechanism an agent i exists who affects the
utility of some other agent j, then agent j cannot affect the utility of agent
i. To begin a simple proof by contradiction, suppose that each of the two
agents can affect the other’s utility, the mechanism F is both broadly
applicable and strategy-proof, and that (without loss of generality)n = 2
and { = 2,

Figure 6 shows what this supposition means. Point g is the base point
for the proof and is the allocation F(u) = Fuyp, up) where (uy, u,) € 02
is a regular point. At u agent 1’s choice set is I'i(u,) and agent 2’s is
I'(u;). The indifference curves of agents 1 and 2 that pass through point
a are the dotted lines labeled, respectively, #; and u,; in conformance
with the requirements of strategy-proofness and regularity, they are
tangent to their respective choice sets. If agent 1 perturbs his preferences
iy slightly to become u{, which is admissible because the mechanism is
obroadly applicable, then his most preferred point on his choice sct,
I'i(uz), becomes F(u;, Uz}, which is labeled as point 6. His indifference
curve through point b is labeled u] . This changes agent 2’s achievable set
to become T'»(u/). Note that agent 2 prefers point b to point a; therefore
the hypothesis that agent 1 can affect agent 2’s utility is met.

Figure 7 develops the contradiction from the basic situation of Figure
6. Because Fis broadly applicable, agent 2 can construct a small perturba-
tion of his preferences from U2 10 u3 so that the following three specifica-
tions hold simultaneously:
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Ty(uz)

Figure 6

Figure 7

Point ¢ is F(u |, u3). The indifference curve for‘uz’ %s tangen; to
['5(u,) at point ¢. Agent 1, when his utility function 1s ul, pre eil:s
point ¢ to point g, which means tha't agent 2 affects agent I's
utility as the proof’s initial hypothesis requires. .

. !
b. Point b, by construction, is F(uq, u3) as well as F(uj, u,).
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€. Again by construction, agent 1’s choice set becomes 1{uz)
when agent 2 perturbs his utility function from Uy to uy. Note
that I';(u3) crosses I'y(u5) at point b,

Because point b is Fu, 43), strategy-proofness and regularity require
that point b be that point on I'y(u3) where agent 17s utility is maximized
when his preferences are ui; that is, u{ indifference curve must be
tangent to I'y(3) at point b. But this is a contradiction because the |
indifference curve through point 5 is necessarily tangent to I” 1(uz) and, at
b, I'i(u3) crosses T3(u2). Therefore the proof is complete: at a regular
point of a broadly applicable and strategy-proof mechanism agents 1 and
2 cannot each affect the other’s utility,

‘Theorem 4.1 generalizes from the public-goods-only case to settings
that include private as well as public goods. To accommodate this change
from public to public and private goods, let A be each agent’s consump-
tion set and redefine an allocation mechanism to be a function F+ " —
A" Thus F(u) = [Fi(u), . . ., Fu), . .., F(w)]is a vector of n func-
tions where the ith function, F;: " —s A, specifies the allocation agent
i receives. The function F; itself has I components: Fi=[Fy, ...,
Fy] where F is the amount agent / receives of good &. If some compo-
nents of each agent’s allocation is a public good, then all the functions E;
are constrained to give each agent the same amount of the public good.
Thus if good 1 is a public good, then F), = Fy=--+=F,. Agents
are assumed to have preferences over only their own consumption set, for
example, agent s utility is u{Fiu)).

Satterthwaite and Sonnenschein call a mechanism nonbossy if, for all
ue Q" all agents i, and all U € 2, F{u) = Flu/u}) implies Fyu) =
Ffu/u) for all agents J. The idea of nonbossiness is that if an agent ;
changes his preferences in a manner that leaves his own allocation
unchanged, then the allocations that all other agents receive should also
remain unchanged. This condition, which has intuitive appeal, is satisfied
at most points by the competitive allocation mechanism. '© 1t is closely
related to Ritz’s noncorruptibility condition; in fact, noncorruptibility
implies nonbossiness. Within the private goods setting agent i affects
agent j at a regular point u € " if a (v/i) € [CHA)]" exists such that
Diw/yF{u) # 0. At each reguiar point the “affects” relation defines a

* Note that nonbossiness is trivially satisfied in the public-goods-only case because every
agent receives the same allocation. In the private-goods-only case the competitive
mechanism satisfies nonbossiness €xcept, as Mark Walker has privately pointed out, in
special circumstances where a continuum of equilibria exist, Satterthwaite and Sonnen-
schein [1981] incorrectly assert that the competitive mechanism is nonbossy at all regular
points.
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binary relation among the agents; we write iH(u)j if agent i affects agent j
" ;‘he private—public goods version of Theorem 4.1 is this. If an alloca-
tion mechanism is broadly applicable, noanssy, apd strat.egy-p_roof, the_r;
at cach regular point 4 € ()" the affects relation H is acyclic. This means 1t
agent i affects agent /, then no agent k (or sequence of agent-s) can exis
who is affected by agent j and who in turn affects agent i. Thus th’e
theorem states that agents cannot mutually accommodate each other’s
preferences; ali accommodation must consist of agents who rank lower on
an exogenously given hierarchy _adjusting to the preferences of those
agents who rank higher on the hierarchy. ‘ '

Serial dictatorship is an example of a strategy-proof m_echamsm th.at is
nonbossy, broadly applicable, and — as tht_e result requires — acycl@ in
the affects relation. The canonical serial dlctatorshlp is the mechanism
where agent 1 selects from an exogenously fixed feasible s?t I, agent 2
selects from a feasible set I';(u,) that depends on agent 1’s choice (orCi
equivalently, his utility function provided nonbossme_ss is respected), an
so on. Serial dictatorship is unattractive because the distribution of power
is lopsided and, as Satterthwaite and Sonnenschein showed_, the out‘(;?lxpe
generally violates Parcto optimality whenever the production possibility
frontier is not linear.

5 Conclusions

This essay has used two approaches to examine th_e possnbxlltylr) lof
constructing strategy-proof (i.e., dominant-strategy .lmplementa‘l f:)
mechanisms. The first approach begins with the environment within
which the mechanism is to be applied and then charagterlzes the strategy-
proof mechanisms that are possible within it, In Secthn 2 we applied _thls
approach to the most unstructured c?f environme'nts: discrete a!terna_tlves
and all preference orderings admissible. The main Tesult for this environ-
ment is negative; if there are at least three alte.rna.tlves, theq all str_altegly—
proof mechanisms that satisfy the Pareto criterion are dictatorial. 3
Section 4 we applied this approach to the structured environments foun

in economic models: the alternative set is a subset of Euclidean space and
preferences are a priori restricted, for example, to be repres_eptable bya
twice differentiable utility function. There we reported additional nega-

tive results.!”

"7 Sections 2 and 4 neglected two well-known cases of preference restrictions: single-
peaked profiles and transferable utility. For the case of single-peaked profrfgs ma_]or.l‘ty
rule is strategy-proof. See Blin and Satterthwaite [1976). For the case of public goods in
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The second approach, which we employed in Section 3, is exactly the
opposite of the first approach. In it we first specify the properties the
mechanism should possess in addition to strategy-proofness and then
characterize the environments in which that mechanism can exist. Sub-
stantial progress has been made in this area, though it is difficult to
characterize this progress as either positive or negative. The positive
aspect is that sondictatorial, strategy-proof mechanisms do exist for
particular environments in which preferences are restricted only slightly.
The negative aspect is that the environments for which these reasonable
mechanisms do exist have, as of yet, no known relation to environments
of the sort that naturally arise in economic models.

From the results that are presented and developed in this essay, we
believe there are three main lessons that can be drawn, First, the theory
of strategy-proof mechanisms is not a neatly finished body of knowiedge.
Numbers of interesting questions are still open. For example, on the
technical side, the two approaches we have used in this essay need to be
drawn together; that is, how do the results of Section 3 relate to the results
in Section 47 A tantalizing, but unexploited, connection is the parallel
that exists between Ritz’s noncorruptibility condition and Satterthwaite
and Sonnenschein’s nonbossiness condition. On the substantive side,
very little work has been done on strategy-proofness in repetitive situa-
tions. Qur intuition is that an important reason why individuals often
choose not to misrepresent their desires in group decision situations is
that they do not find it in their interest to acquire the reputation of a
manipulator.

Second, with only one important exception, economic Jife is by and
large not straightforward in the sense of always giving each agent a
dominant strategy. Even though the theory as it currently stands is
not absolutely conclusive concerning the impossibility of constructing
strategy-proof mechanisms for economic environments, it has clearly
established that strategy-proofness can be achieved only in certain envi-
Tfonments and then only by using caretully designed mechanisms. Thus an
¢conomic agent in his individual optimizing behavior does generally find
it in his interest to worry about other agents’ intentions and to play the
game of trying to anticipate their actions correctly in planning his own
actions even as they try to anticipate his actions in planning their actions.

Footnote 17 (contd.)

the presence of transferable utility, Groves schemes are strategy-proof. A large litera-
ture exists on Groves schemes; see, for example, Groves [1970], Clarke (1971}, Groves -
and Loeb [1975], Green and Laffont {1979], and Holmstrom [1979]. We have not
included these two cases in this chapter for reasons of space and because our judgment is
that they are special cases that do not generalize,
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The exception to this generalization is the large—numl?erwofwagcnts caste:.
For example, in an exchange economy th'at hasa contmuurp of compe 1d
tors, every agent is unable to influence prices, becomeg a price taker, and
finds it a dominant strategy to report his demand function accurate'ly an
without consideration of the demands that other agents are reporting. If
the number of agents is small, however, then each agent can afferct the
price and no longer has a2 dominant strategy. The demand functlonhan
agent wants to report then de}?gnds importantly on the demands other
re expected to report. ' ‘
ag(;ni;fa?ly, thlf): theory of strategy-proof mechanisps has phllos:j)pl;:c
implications. Bok [1978], Ch. 1, in her boqk that reviews anq expands tHe
ethical arguments extant against lying (‘jefmt_aS alie to i?e an mtenti;)na y
misleading statement. By this definition, in those situations w ere a
group’s decision process can usefully be .represented by an allocgnon
mechanism, an agent who misrepresentg his pr.ef‘efgnces may sometimes
legitimately be said to be lying. The impossibility results concgrnmg
strategy-proof mechanisms suggest that-, no matter h_ow wc?ll we rle e;lfil;
the social system, agents from time to time h‘ave an incentive to lie. o
incentive is intrinsic to social mechanisms:. Itis as_much areflectiono t te
imperfectability of society generally as it is qf the 1mperfectness£i of s:)tcnelig
specifically, Therefore an individual’s decision to be honest and not to

is truly an ethical decision, because, even in principle, society cannot be + =

designed so that honesty is self-enforcing. The excuse thatalieis society’s
fault since its structure gave the liar the incentive .to perpetrate‘ hfs
deception is empty because a society that gives no incentive to lie is
logically impossible.
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